000276430 001__ 276430
000276430 005__ 20210129220859.0
000276430 0247_ $$2doi$$a10.1002/adfm.201500855
000276430 0247_ $$2ISSN$$a1057-9257
000276430 0247_ $$2ISSN$$a1099-0712
000276430 0247_ $$2ISSN$$a1616-301X
000276430 0247_ $$2ISSN$$a1616-3028
000276430 0247_ $$2WOS$$aWOS:000363685900009
000276430 037__ $$aFZJ-2015-06869
000276430 082__ $$a620
000276430 1001_ $$0P:(DE-HGF)0$$aRogala, Maciej$$b0$$eCorresponding author
000276430 245__ $$aResistive Switching of a Quasi-Homogeneous Distribution of Filaments Generated at Heat-Treated TiO $_{2}$ (110)-Surfaces
000276430 260__ $$aWeinheim$$bWiley-VCH$$c2015
000276430 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449125447_15369
000276430 3367_ $$2DataCite$$aOutput Types/Journal article
000276430 3367_ $$00$$2EndNote$$aJournal Article
000276430 3367_ $$2BibTeX$$aARTICLE
000276430 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276430 3367_ $$2DRIVER$$aarticle
000276430 520__ $$aResistive switching of thermally treated rutile single crystals with (110) orientation is studied. A heat treatment procedure is developed that involves reduction and oxidation steps and allows to induce low resistance states in switchable regions at the surface by low-voltage electrical stimulation with the conducting tip of an atomic force microscope. This way, it is possible to electrically imprint quasi-homogeneous switchable regions over several square micrometers. These regions are identified to consist of nanofilaments crossing the surface with a density of around 1012 cm−2, much higher in density than observed for single crystals so far. Experimental evidence is given that these nanofilaments are not related to inherent structural imperfections such as dislocations, but may originate from the linear agglomeration of oxygen vacancies as predicted by theory. Ab initio calculations and electrical simulations are performed to analyze the filamentary structures and their network in the effort to explain the observed filamentary switching of heat-treated single-crystalline TiO2.
000276430 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000276430 588__ $$aDataset connected to CrossRef
000276430 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b1
000276430 7001_ $$0P:(DE-Juel1)125382$$aSpeier, Wolfgang$$b2
000276430 7001_ $$0P:(DE-HGF)0$$aKlusek, Zbigniew$$b3
000276430 7001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b4
000276430 7001_ $$0P:(DE-Juel1)130993$$aSzot, K.$$b5$$eCorresponding author
000276430 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201500855$$gVol. 25, no. 40, p. 6382 - 6389$$n40$$p6382 - 6389$$tAdvanced functional materials$$v25$$x1616-301X$$y2015
000276430 909CO $$ooai:juser.fz-juelich.de:276430$$pVDB
000276430 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000276430 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2014
000276430 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000276430 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000276430 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000276430 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000276430 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000276430 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000276430 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000276430 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000276430 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV FUNCT MATER : 2014
000276430 9141_ $$y2015
000276430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000276430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125382$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000276430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000276430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130993$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000276430 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000276430 920__ $$lyes
000276430 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000276430 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x1
000276430 9201_ $$0I:(DE-Juel1)UE-20120423$$kUE$$lUnternehmensentwicklung$$x2
000276430 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x3
000276430 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x4
000276430 980__ $$ajournal
000276430 980__ $$aVDB
000276430 980__ $$aI:(DE-Juel1)PGI-1-20110106
000276430 980__ $$aI:(DE-Juel1)PGI-7-20110106
000276430 980__ $$aI:(DE-Juel1)UE-20120423
000276430 980__ $$aI:(DE-Juel1)IAS-1-20090406
000276430 980__ $$aI:(DE-82)080009_20140620
000276430 980__ $$aUNRESTRICTED
000276430 981__ $$aI:(DE-Juel1)PGI-7-20110106
000276430 981__ $$aI:(DE-Juel1)UE-20120423
000276430 981__ $$aI:(DE-Juel1)IAS-1-20090406