001     276436
005     20240711114011.0
024 7 _ |a 10.1016/j.jnucmat.2014.10.070
|2 doi
024 7 _ |a WOS:000358467200154
|2 WOS
037 _ _ |a FZJ-2015-06875
082 _ _ |a 530
100 1 _ |a Steudel, Isabel
|0 P:(DE-Juel1)156279
|b 0
245 _ _ |a Melt Layer Formation in Stainless Steel Under Transient Thermal Loads
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1448958690_13521
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a To investigate the performance of stainless steel under transient thermal events, such as photon pulses caused by disruptions mitigated by massive gas injection (MGI), the material has been exposed to electron beam loads with ITER relevant power densities slightly above the melting threshold (245 MW/m2) and a pulse duration of 3 ms (Sugihara et al., 2012; Klimov et al., 2013; Pitts et al., 2013). The samples were manufactured from different steel grades with slightly modified chemical composition. To investigate the effect of repetitive surface heat loads on the melting process and the melt motion, identical heat pulses in the range of 100–3000 were applied. All tested materials showed intense melt-induced surface roughening, driven by repeated shallow surface melting up to several ten micrometre and fast re-solidification with epitaxial grain growth. During the liquid phase, melt motion induced by cohesive forces results in the formation of a wavy surface structure with apexes. Further experiments have been performed to study the effects of non-perpendicular surfaces or leading edges.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Klimov, N. S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Linke, Jochen
|0 P:(DE-Juel1)129747
|b 2
|e Corresponding author
700 1 _ |a Loewenhoff, Thorsten
|0 P:(DE-Juel1)129751
|b 3
700 1 _ |a Pintsuk, Gerald
|0 P:(DE-Juel1)129778
|b 4
700 1 _ |a Pitts, R. A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wirtz, Marius
|0 P:(DE-Juel1)129811
|b 6
773 _ _ |a 10.1016/j.jnucmat.2014.10.070
|0 PERI:(DE-600)2001279-2
|p 731-734
|t Journal of nuclear materials
|v 463
|y 2015
|x 0022-3115
856 4 _ |u https://juser.fz-juelich.de/record/276436/files/1-s2.0-S0022311514007545-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276436/files/1-s2.0-S0022311514007545-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276436/files/1-s2.0-S0022311514007545-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276436/files/1-s2.0-S0022311514007545-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276436/files/1-s2.0-S0022311514007545-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276436/files/1-s2.0-S0022311514007545-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:276436
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156279
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129747
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129751
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129778
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129811
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MATER : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IEK-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21