000276437 001__ 276437
000276437 005__ 20240711114011.0
000276437 0247_ $$2doi$$a10.1016/j.jnucmat.2015.09.034
000276437 0247_ $$2WOS$$aWOS:000365602800016
000276437 037__ $$aFZJ-2015-06876
000276437 082__ $$a530
000276437 1001_ $$0P:(DE-HGF)0$$aArakcheev, A. A.$$b0$$eCorresponding author
000276437 245__ $$aCalculation of Cracking inTungsten Manufactured According to ITER Specifications Under Pulsed Heat Load
000276437 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000276437 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1448958871_13516
000276437 3367_ $$2DataCite$$aOutput Types/Journal article
000276437 3367_ $$00$$2EndNote$$aJournal Article
000276437 3367_ $$2BibTeX$$aARTICLE
000276437 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276437 3367_ $$2DRIVER$$aarticle
000276437 520__ $$aA mathematical model of surface cracking under pulsed heat load was developed. The model correctly describes a smooth brittle–ductile transition. The elastic deformation is described in a thin-heated-layer approximation. The plastic deformation is described with the Hollomon equation. The time dependence of the deformation and stresses is described for one heating–cooling cycle for a material without initial plastic deformation.The model can be applied to tungsten manufactured according to ITER specifications. The model shows that the stability of stress-relieved tungsten deteriorates when the base temperature increases. This proved to be a result of the close ultimate tensile and yield strengths. For a heat load of arbitrary magnitude a stability criterion was obtained in the form of condition on the relation of the ultimate tensile and yield strengths.
000276437 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000276437 7001_ $$0P:(DE-HGF)0$$aSkovorodin, D. I.$$b1
000276437 7001_ $$0P:(DE-HGF)0$$aBurdakov, A. V.$$b2
000276437 7001_ $$0P:(DE-HGF)0$$aShoshin, A. A.$$b3
000276437 7001_ $$0P:(DE-HGF)0$$aPolosatkin, S. V.$$b4
000276437 7001_ $$0P:(DE-HGF)0$$aVasilyev, A. A.$$b5
000276437 7001_ $$0P:(DE-HGF)0$$aPostupaev, V. V.$$b6
000276437 7001_ $$0P:(DE-HGF)0$$aVyacheslavov, L. N.$$b7
000276437 7001_ $$0P:(DE-HGF)0$$aKasatov, A. A.$$b8
000276437 7001_ $$0P:(DE-Juel1)130040$$aHuber, Alexander$$b9
000276437 7001_ $$0P:(DE-Juel1)4596$$aMertens, Philippe$$b10
000276437 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b11
000276437 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Christian$$b12
000276437 7001_ $$0P:(DE-Juel1)130070$$aKreter, Arkadi$$b13
000276437 7001_ $$0P:(DE-Juel1)129751$$aLoewenhoff, Thorsten$$b14
000276437 7001_ $$0P:(DE-HGF)0$$aBegrambekov, L.$$b15
000276437 7001_ $$0P:(DE-HGF)0$$aGrunin, A.$$b16
000276437 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2015.09.034$$n1$$p165-171$$tJournal of nuclear materials$$v467$$x0022-3115$$y2015
000276437 8564_ $$uhttps://juser.fz-juelich.de/record/276437/files/1-s2.0-S0022311515302233-main.pdf$$yRestricted
000276437 8564_ $$uhttps://juser.fz-juelich.de/record/276437/files/1-s2.0-S0022311515302233-main.gif?subformat=icon$$xicon$$yRestricted
000276437 8564_ $$uhttps://juser.fz-juelich.de/record/276437/files/1-s2.0-S0022311515302233-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000276437 8564_ $$uhttps://juser.fz-juelich.de/record/276437/files/1-s2.0-S0022311515302233-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000276437 8564_ $$uhttps://juser.fz-juelich.de/record/276437/files/1-s2.0-S0022311515302233-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000276437 8564_ $$uhttps://juser.fz-juelich.de/record/276437/files/1-s2.0-S0022311515302233-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000276437 909CO $$ooai:juser.fz-juelich.de:276437$$pVDB
000276437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000276437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4596$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000276437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000276437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000276437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich GmbH$$b13$$kFZJ
000276437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129751$$aForschungszentrum Jülich GmbH$$b14$$kFZJ
000276437 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000276437 9141_ $$y2015
000276437 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000276437 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MATER : 2014
000276437 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000276437 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000276437 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000276437 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000276437 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000276437 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000276437 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000276437 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000276437 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000276437 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x1
000276437 980__ $$ajournal
000276437 980__ $$aVDB
000276437 980__ $$aI:(DE-Juel1)IEK-2-20101013
000276437 980__ $$aI:(DE-Juel1)IEK-4-20101013
000276437 980__ $$aUNRESTRICTED
000276437 981__ $$aI:(DE-Juel1)IMD-1-20101013
000276437 981__ $$aI:(DE-Juel1)IFN-1-20101013
000276437 981__ $$aI:(DE-Juel1)IEK-4-20101013