001     276437
005     20240711114011.0
024 7 _ |a 10.1016/j.jnucmat.2015.09.034
|2 doi
024 7 _ |a WOS:000365602800016
|2 WOS
037 _ _ |a FZJ-2015-06876
082 _ _ |a 530
100 1 _ |a Arakcheev, A. A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Calculation of Cracking inTungsten Manufactured According to ITER Specifications Under Pulsed Heat Load
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1448958871_13516
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a A mathematical model of surface cracking under pulsed heat load was developed. The model correctly describes a smooth brittle–ductile transition. The elastic deformation is described in a thin-heated-layer approximation. The plastic deformation is described with the Hollomon equation. The time dependence of the deformation and stresses is described for one heating–cooling cycle for a material without initial plastic deformation.The model can be applied to tungsten manufactured according to ITER specifications. The model shows that the stability of stress-relieved tungsten deteriorates when the base temperature increases. This proved to be a result of the close ultimate tensile and yield strengths. For a heat load of arbitrary magnitude a stability criterion was obtained in the form of condition on the relation of the ultimate tensile and yield strengths.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
700 1 _ |a Skovorodin, D. I.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Burdakov, A. V.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Shoshin, A. A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Polosatkin, S. V.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Vasilyev, A. A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Postupaev, V. V.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vyacheslavov, L. N.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kasatov, A. A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Huber, Alexander
|0 P:(DE-Juel1)130040
|b 9
700 1 _ |a Mertens, Philippe
|0 P:(DE-Juel1)4596
|b 10
700 1 _ |a Wirtz, Marius
|0 P:(DE-Juel1)129811
|b 11
700 1 _ |a Linsmeier, Christian
|0 P:(DE-Juel1)157640
|b 12
700 1 _ |a Kreter, Arkadi
|0 P:(DE-Juel1)130070
|b 13
700 1 _ |a Loewenhoff, Thorsten
|0 P:(DE-Juel1)129751
|b 14
700 1 _ |a Begrambekov, L.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Grunin, A.
|0 P:(DE-HGF)0
|b 16
773 _ _ |a 10.1016/j.jnucmat.2015.09.034
|0 PERI:(DE-600)2001279-2
|n 1
|p 165-171
|t Journal of nuclear materials
|v 467
|y 2015
|x 0022-3115
856 4 _ |u https://juser.fz-juelich.de/record/276437/files/1-s2.0-S0022311515302233-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276437/files/1-s2.0-S0022311515302233-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276437/files/1-s2.0-S0022311515302233-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276437/files/1-s2.0-S0022311515302233-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276437/files/1-s2.0-S0022311515302233-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276437/files/1-s2.0-S0022311515302233-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:276437
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130040
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)4596
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129811
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)129751
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MATER : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IEK-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21