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Abstract9

We currently witness an increasingly higher throughput in image-based plant10

phenotyping experiments. The majority of imaging data are collected based on11

complex automated procedures, and are then post-processed to extract phenotyping12

related information. In this article we show that image compression used in such13

procedures may compromise phenotyping results and needs to be taken into account.14

We motivate the paper with three illuminating proof of concept experiments which15

demonstrate that compression (especially in its most common lossy form of JPEG)16

does affect measurements of plant traits and errors introduced can be high. We further17

systematically explore how compression affects measurement fidelity, quantified18

as effects on image quality as well as errors in extracted plant visual traits. To do19

so we evaluate a variety of image-based phenotyping scenarios, including size and20

color of shoots, leaf and root growth, as well as root system analysis. Overall, we21

find that compression has a considerable effect on several types of analyses and22

that proper care is necessary to ensure that such choice does not affect biological23

findings. In order to avoid or at least minimize introduced measurement errors, for24

each scenario we derive recommendations and provide guidelines on how to identify25

suitable compression options in practice. We also find that certain compression26

choices can offer beneficial returns, in terms of reducing the amount of data storage27

without compromising phenotyping results. This may enable even higher throughput28

experiments in the future.29

Additional keywords: computer vision, imaging sensor, coding, lossless, lossy,30

optical flow, growth analysis.31
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1 Introduction32

In the last decades, image-based plant phenotyping has gained considerable attention33

due to the availability of high-end commercial solutions as well as open and low-cost34

approaches (Spalding and Miller 2013). Vision-based measurements allow recording35

and monitoring of relevant phenotypes non-invasively, with higher precision, accuracy,36

and throughput than manual measurement (Shirmohammadi and Ferrero 2014), at con-37

siderably reduced cost and human labor (Furbank and Tester 2011). The adoption of38

image-based approaches, favored by the availability of a variety of image processing39

solutions (Lobet et al. 2013; Spalding and Miller 2013; Klukas et al. 2014; Sozzani et al.40

2014) and robust automation, has increased significantly the throughput of phenotyp-41

ing experiments, which is key to advancing our understanding of plant structure and42

function.43

However, the design and deployment of such approaches requires a significant multi-44

disciplinary effort and know-how in a variety of domains such as automation hardware,45

image acquisition, software engineering, computer vision and image analysis, and of46

course plant biology. Clearly, such know-how can be found in few settings and more47

often than not plant biologists need to rely on (and cannot control for) choices made by48

other parties involved (e.g., a manufacturer or a contract provider or a collaborator). One49

crucial case we want to highlight here, is the choice of data compression, a procedure by50

which a file (e.g., an image) can be represented digitally using as few computer storage51

resources as possible. This choice does affect the fidelity of the available data, and in52

many cases its presence in the acquisition procedure is unknown to the end user. An53

inspection of approximately 60 well cited papers in the recent literature among those54

present in the plant image analysis software database (Lobet et al. 2013) finds that (i)55

most authors do not report if imaging data were compressed, and that (ii) few authors56

did use compression with a lossy image format (e.g., JPEG). Both of these findings are57

worrisome, because in the former case it could be that it is unknown even to the authors58

if compression was present and in the latter case it is unknown if compression had an59

effect. These concerns are also shared by others, stating that care in compression choice60

must be undertaken (Slovak et al. 2014) and that it should be reported (Cwiek et al. 2014).61

Clearly, lossy compression (which reduces an image’s file size by permanently re-62

moving certain information from the original image) must have an effect, but in some63

scenarios such compression choice is necessary. The constant need to increase experi-64

mental scale (e.g., more subjects, higher spatial and temporal resolution, more imaging65
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modalities (Furbank and Tester 2011; Dhondt et al. 2013; Fiorani and Schurr 2013))66

produces vast amounts of image data (Pieruschka and Poorter 2012; Cobb et al. 2013;67

Granier and Vile 2014). For example, a single experiment with the setup described in68

(Dhondt et al. 2014), i.e. 10 plants imaged per hour for 19 days, produces approximately69

70 gigabytes (GB) of raw image data (equivalent to 15 DVD discs). Using color images70

and higher resolution camera sensors (e.g., as in (Briese et al. 2013; Knüfer et al. 2013))71

would increase that figure even more to 250 GB (equivalent to 53 DVD discs) for the same72

experiment. State-of-the-art image compression standards would compact such data73

in a way that it would fit in a single DVD disc. While upgrading and ameliorating the74

e-infrastructure is a key issue (Pieruschka and Poorter 2012), it is a slowly changing factor75

and a costly operation, which requires sensible data management strategies and planning.76

Furthermore, the importance of easy and rapid access to data has been highlighted for77

plant phenotyping projects involving institutions and parties geographically distributed78

(Billiau et al. 2012). Thus, any savings in the amount of data transferred or archived have79

significant returns to the end user.80

In this paper, we first introduce necessary concepts and terminology, relevant error81

measures allowing to evaluate compression performance in plant phenotyping experi-82

ments, as well as image compression standards used here. We then offer three proof of83

concept experiments to illustrate the effects lossy compression can have: (1) on a simple84

phenotyping experiment related to measuring growth in a population of 19 Arabidopsis85

thaliana Col-0 individuals, (2) on estimation of local growth rate of an Arabidopsis root86

tip from a video, and (3) on visual perceptibility of fine roots in high-resolution rhizotron87

images. For systematic evaluation, we proceed by offering a series of experiments that88

show, how different choices of compression standards and quality settings affect the89

extraction of phenotypic information from images and image sequences (of roots, shoots,90

or leaves) obtained by plant phenotyping experiments1. From these systematic evalu-91

ations we derive recommendations, such as which compression standards, i.e. which92

codecs (see below), are suitable for which task using which settings. For image-based93

plant phenotyping tasks not evaluated here, we derive recommendations, how to test,94

which codec and settings should be selected.95

1Some of which are carried out and routinely used at the Institute of Bio- and Geosciences: Plant
Sciences (IBG-2) of Forschungszentrum Jülich, Germany (http://www.fz-juelich.de/ibg/ibg-2/EN).
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2 Materials and methods96

We start by introducing fundamental concepts of digital image and video compression97

(Sayood 2012) in order to establish usual terminology. Then, we briefly review the coding98

standards adopted in the experiments and case studies that follow. Finally, we define the99

quality and error measures used to compare compression performance in phenotyping100

experiments.101

2.1 Images and image compression102

Digital images are two-dimensional grids of picture elements (pixels). For gray scale103

images each pixel contains a single numerical value indicating the pixel’s intensity. Such104

values are often given as 8-bit integer numbers (thus, ranging between 0 and 255) and105

therefore uncompressed images use 8 bits per pixel for storage. The most usual color106

images store 3 values per pixel standing for red, green, and blue (RGB) light intensity,107

where again each value is given as an 8-bit integer, leading to a storage space of 24 bits108

per pixel. A digital video is a sequence of gray scale or color images usually called109

‘frames’.110

Typically, raw image data is highly redundant, e.g. in a spatially homogeneous region111

like a uniform background, pixel values do not change when stepping from one pixel to112

its neighbors. In such cases it is sufficient to store the pixels value once and in addition113

store for how long this value stays constant, when stepping from pixel to pixel. This is114

called ‘run-length encoding’, a base mechanism often used in compression, e.g. in JPEG.115

Raw image data cannot only be highly redundant in space, but also in time, e.g. when116

the background remains constant over time; or in color, e.g. when only a fraction of the117

available color space is used.118

Data compression aims to reduce such unwanted redundancy to obtain an as compact119

digital representation as possible, i.e. a small image file. The smaller the file, the higher120

is the compression efficiency. It is expressed in terms of bit rate (BR), measured in bits121

per pixel (bpp):122

BR =
image file size

width × height
, (1)

BR denotes the average number of bits required to represent a single image pixel in an123

image with given width and height.124

Current compression standards use a variety of sophisticated techniques to achieve125
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lower and lower bit rates. Such schemes consist of two parts: an encoder converting126

the original image into a compressed file and a decoder reversing this process, i.e.127

converting a compressed file into an image. A software or hardware implementation of128

a compression standard is thus termed ‘codec’ (coder/decoder). A typical workflow for129

encoding and decoding is depicted in Figure 1 for background information, but details130

of the techniques are of no relevance here. However, we need to be aware that there are131

two general categories of compression:132

Lossless compression: Here no loss of information occurs and the decompressed image133

is a prefect copy of the original, as e.g. in ZIP file compression. Thus, lossless compres-134

sion does not compromise image quality or results of phenotyping experiments. Their135

relevance in practice lies in the achieved compression efficiency and the computational136

effort needed for coding and decoding. We investigate this in Section 4.1.137

Lossy compression: Here some information is lost due to compression and the decom-138

pressed image is only an approximation of the original. Typically, lossy compression139

achieves much higher compression efficiency, i.e. smaller file sizes. It has become ubiqui-140

tous with the JPEG standard (ITU 1992). Lossy compression standards are designed to141

achieve the least mathematical or perceptible (Lee and Ebrahimi 2012) difference between142

the original and reconstructed images, with the smallest possible compressed file size.143

Therefore, applying lossy compression always entails a trade off between smaller file144

size and better image quality.145

2.2 Metrics for image quality evaluation146

The core of this article is to investigate what ‘better image quality’ really means in a147

plant phenotyping context. As higher bit rate, BR (Eq. (1)), typically corresponds to less148

information loss, we evaluate different codecs at various bit rates. We encode the original149

image I at a given bit rate, reconstruct the image Ĩ by decompression, and compare it to150

the unprocessed original I. For this comparison we use several information theoretic or151

plant science specific metrics, in order to investigate which codec is the best for a given152

plant phenotyping application.153

Most codecs are developed without a specific application in mind. They are therefore154

usually evaluated against information theoretic measures like execution efficiency, image155

fidelity or color distortion. We use these measures for reference and introduce them below,156

however these measures are not specific for plant experiments. For plant experiments the157

ultimate information of interest is the actual measure describing a plant trait. Therefore,158
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compression performance should be evaluated against how accurately the trait of interest159

can be measured (Minervini and Tsaftaris 2013). As quantitative traits we exemplarily160

investigate image segmentation-based traits and traits based on image sequence analysis.161

For segmentation-based analyses (i.e. involving the automatic delineation of plant objects162

in an image) we select two measures, namely Projected Leaf Area (PLA) and a more163

general segmentation accuracy measure (DSC). For image sequence analysis we use164

Relative Elemental Growth Rate (REGR) as plant-related measure and the Average End-165

point Error (AEE) as a well-established measure for optical flow accuracy. Finally, we166

also look at visual fidelity when a human expert evaluates an image. For visual fidelity167

we show and discuss example images, other measures are defined in the following168

paragraphs.169

Execution efficiency is evaluated in terms of runtime, i.e. the time to encode and decode170

image data. It is measured in seconds (see Appendix B for further details on execution171

times).172

Image fidelity is expressed in terms of Peak Signal-to-Noise Ratio (PSNR), measured in173

decibel (dB):174

PSNR = 10 · log10

2552

MSE(I, Ĩ)
, (2)

where MSE(I, Ĩ) = 1
N ∑

N
i=1(Ii − Ĩi)

2 is the mean squared error, and N is the number of175

image pixels. A higher PSNR indicates better image fidelity. For videos, we average176

PSNR values and also bit rate BR (Eq. (1)) across all frames of the sequence.177

Color distortion can be quantified using the information theoretic Kullback-Leibler178

(KL) divergence (Kullback and Leibler 1951):179

KL =
B

∑
i=1

Hi log2

Hi

H̃i

, (3)

where H and H̃ denote normalized histograms of intensity values of a single color180

channel, computed on the original and reconstructed images, respectively. B is the181

number of histogram bins. For RGB images, we estimate overall color distortion,182

KLRGB = (KLR + KLG + KLB)/3, as the average between the KL divergence values183

obtained on the marginal histograms of the RGB color components. KL divergence is a184

unitless quantity, that should be as close to zero as possible for higher color fidelity.185

Projected Leaf Area (PLA) is proportional to the number of plant pixels observed in186

an image, e.g. a top view of a rosette plant. PLA is frequently used to evaluate shoot187
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development as it correlates well with plant biomass (Walter et al. 2007; Granier et al.188

2006). Plant pixels are found via automated segmentation. We quantify the amount of189

error in plant area estimation when compression is used as the relative change:190

PLA Error =
Ã − A

A
, (4)

of area Ã found automatically on the reconstructed image (i.e. the image after the191

compressed image is decompressed) with respect to the area A found based on the192

original uncompressed image. We express PLA Error as a percentage, where best possible193

value is 0%, while positive or negative values indicate an over- or under-estimation of194

the plant area, respectively.195

Segmentation accuracy is more sensitive to segmentation errors than PLA. Suppose a196

found segment has the correct size, but is distorted or shifted with respect to the ground197

truth segment, then PLA Error (Eq. (4)) would be 0 despite the segmentation error. A198

measure capturing such errors is the Dice Similarity Coefficient (DSC) (Dice 1945):199

DSC =
2 · |M ∩ M̃|

|M|+ |M̃|
, (5)

between the binary segmentation masks M and M̃, obtained by segmenting original and200

reconstructed images, respectively. We express DSC as a percentage, where a DSC value201

of 100% denotes perfectly matching segmentation masks.202

Relative Elemental Growth Rate (REGR): Accurate estimation of local growth rates203

can be obtained using motion estimation techniques based on optical flow analysis204

(Schmundt et al. 1998; Walter and Schurr 2005). We estimate the optical flow from205

an image sequence using the combined local-global approach in (Bruhn et al. 2005).206

This allows to track points through the image sequence. REGR is quantified as the207

spatial 1D elongation rate between two points on e.g. a root (Peters and Bernstein 1997;208

Chavarrı́a-Krauser et al. 2008):209

REGR =
1

T
ln

lj(T)

lj(0)
, (6)

where T is the time duration over which growth is estimated, and lj(·) is the distance210

between the points of interest at a given time. REGR is measured in % h−1, and its211

calculation relies only on initial (at time t = 0) and final (at t = T) segment lengths.212
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Average End-point Error (Otte and Nagel 1994) is a more general performance measure213

for optical flow, also applicable e.g. in tracking scenarios. Here, optical flow ũ calculated214

on the compressed sequence is compared to the ground truth flow u calculated on the215

original sequence using the normalized Average End-point Error (AEE) :216

AEE =
∑

N
i=1 ‖ũi − ui‖2

∑
N
i=1 ‖ui‖2

, (7)

where ui and ũi denote the displacement estimated on original and reconstructed se-217

quence at the ith pixel, and ‖ · ‖2 denotes the L2 norm yielding the length of the vector.218

AEE is expressed as a percentage, with 0% denoting perfectly matching flow fields. We219

normalize with respect to the ground truth motion vector length, in order to accommo-220

date slow-moving test sequences.221

2.3 Employed image and video codecs222

We employ a variety of state-of-the-art lossless and lossy image and video coding stan-223

dards. While these have been developed for multimedia and entertainment applications224

they are widely used in several other domains.225

For lossless image compression we consider: Portable Network Graphics (PNG) (W3C226

2003), JPEG-LS (Weinberger et al. 2000), the lossless option of JPEG 2000 (Skodras et al.227

2001), and WebP.228

For lossy image compression we consider: JPEG (ITU 1992), JPEG 2000 (Skodras et al.229

2001), and WebP. We also consider a variant of JPEG 2000, permitting native region-of-230

interest (ROI) coding (Christopoulos et al. 2000), a feature allowing to encode foreground231

image regions at a higher quality than background regions.232

For video we consider only lossy standards, namely: the royalty free VP9 (Mukherjee233

et al. 2013), and the recent High Efficiency Video Coding (HEVC) (Sullivan et al. 2012).234

Additional details and parameters used are outlined in Appendix A.235

3 Case studies: Effect of compression in typical plant phe-236

notyping applications237

In the following, we investigate how lossy image and video compression techniques238

influence results in three typical plant phenotyping experiments. In Section 3.1, we239
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consider size measurement of Arabidopsis thaliana using projected leaf area (PLA), i.e.240

a typical trait based on segmentation of single images. In Section 3.2, we select local241

growth rate of a root tip, i.e. a trait derived from an image sequence. In Section 3.3, we242

investigate rhizotron images showing complete root systems in soil, i.e. an example243

where the reference state-of-the-art evaluation still is the human eye.244

3.1 Example 1: Size of a rosette plant evaluated by PLA245

The purpose of this proof of concept experiment is to demonstrate the type of errors246

introduced by lossy compression in a typical phenotyping experiment measuring rosette247

growth over a period of time. We use imaging data of a population of 19 wild-type (Col-0)248

Arabidopsis thaliana plant subjects acquired using off-the-shelf commercial cameras in249

a controlled environment as described in (Minervini et al. 2014a; Scharr et al. 2014).250

Twenty (20) observations within an imaging period of 7 consecutive days, 12 days after251

germination, are obtained for each replicate. The images are in color and are recorded in252

the raw, uncompressed camera format.253

Two versions of the dataset are considered and are processed individually. One,254

uncompressed, containing the original images, and one compressed with the JPEG algorithm255

at quality factor q = 27 (cf. Figure 2a-b). To highlight the subtle compression artifacts,256

Figure 2c-d shows a zoomed detail of one of the plants (in the blue bounding box in257

Figure 2a-b). Compression introduces slight discontinuities due to the so-called blocking258

artifacts but this does not lead to obvious loss in perceived image quality.259

Images are analyzed independently to obtain rosette segmentations as described260

in (Minervini et al. 2014a). Even these slight compression artifacts do affect analysis261

algorithms: as shown in Figure 2e compression causes changes in the segmentation. We262

observe leakage (indicated with red pixels) of the plant boundary to non-relevant plant263

material (in this case moss). Compression also tends to slightly affect the delineation of264

the plant (indicated with blue pixels) almost in its whole periphery and causes also the265

loss of some of the leaf stems. These segmentation differences directly affect Projected266

Leaf Area (PLA). PLA Error (Eq. (4)) is 3% in the shown case. We estimate PLA Error267

(Eq. (4)) for all plants and all time points (cf. Figure 2f). We observe that errors are diverse.268

PLA is mostly overestimated, up to 12%, a trend increasing with time, but sometimes269

also underestimated by up to -4%. Notice that the ordering of dots changes as a function270

of time and how as time advances larger errors are evident.271

These empirical observations are statistically confirmed by an ANOVA. We conduct272
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a one-way repeated measures ANOVA (using Stata version 11, StataCorp LP, College273

Station, Texas, USA) to investigate significance of effects of time (i.e. within subjects)274

and of replicate (i.e. between subjects) on PLA error. This indicates if compression275

affects replicates differently and if the error changes as plants grow. Since PLA error276

has been normalized by the plant’s area before compression, individual growth effects277

of plants should be minimal, and ANOVA will be testing a linear effect of the two278

independent variables (IVs) time and replicate on the error introduced by compression279

on PLA measurements, via the PLA error dependent variable.280

ANOVA results are shown in Table 1. Considering a significance level of < 0.05, time281

is a relevant factor (F[4.05, 72.99] = 3.65, p-value = 0.008) with a positive slope and282

between subject effects are present among the replicates (F[1, 18] = 81.27, p-value <283

0.00001).284

We conclude that in this example visually nearly unnoticeable compression distortion285

affects rosette growth estimates.286

3.2 Example 2: Quantifying local root growth by REGR287

Several image-based plant measurements rely on accurate correspondence analysis, e.g.,288

image-based 3D reconstruction, motion and local growth rate analysis. As an example of289

this analysis class, we investigate local motion analysis, e.g. used to study growth-related290

phenotypes such as gravitropic response (Chavarrı́a-Krauser et al. 2008).291

This experiment investigates how distortion in an optical flow field due to JPEG292

compression affects local growth estimation. To this end we adopt the method for REGR293

estimation in root tips as described in (Chavarrı́a-Krauser et al. 2008). We apply it to an294

image sequence showing a growing Arabidopsis root tip (cf. Figure 3a, original) over295

2.5 hours. The sequence consists of 300 images and the processed region of interest is296

422×77 pixels.297

The method works as follows: the mid-line C of the root (cmp. the green line in298

Figure 3a, at t = 0 h) is given for the first image. C is represented by equidistantly spaced299

points Cj, one per pixel length. The positions of these points are individually tracked in300

time by optical flow calculated from the image sequence (using the algorithm given in301

(Bruhn et al. 2005)). The outcome of this tracking is shown as green points in Figure 3a,302

original at t = 2.5 h. From the distance lj between a point Cj and its neighbor Cj+1 at t =303

0 h and at t = 2.5 h Relative Elemental Growth Rate (REGR) is then calculated via Eq. (6).304

Figure 3b, black line, shows the so derived growth rate mapped to the mid-line at t305
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= 0. In agreement with (Chavarrı́a-Krauser et al. 2008) we observe that the growth rate306

between quiescence center and growth zone (position x between 0 and approx. 130 µm) is307

around 5 % h−1. The growth zone starts around position x = 130 µm and ends at approx.308

x = 450 µm.309

To investigate the effects of compression, we store the sequence in 4 different JPEG310

qualities q ∈ {95, 85, 75, 65} and apply the method as before. Figure 3a shows the311

tracking results for these JPEG qualities and Figure 3b the corresponding REGR curves.312

Comparing the tracking results for the different qualities we observe, that compression313

affects tracking of different root zones inconsistently, mainly depending on local image314

contrast. For example, while the locations of growth maximum and root tip appear315

stable with respect to compression, width of growth zone decreases up to 20% for higher316

compression. However, major effects of compression occur in the zone behind the tip,317

whose maximum growth rate should be constant at approximately 5 % h−1 (Chavarrı́a-318

Krauser et al. 2005, 2008), while already for very high quality JPEG compression (q = 95),319

the observed error in REGR (Eq. (6)) is 21%. For higher compression ratios (i.e. lower320

JPEG quality factor q) the error in REGR increases dramatically up to approximately321

380% (q = 65).322

We conclude that in this example compression affects the estimation of the spatio-temporal323

pattern of root tip growth, especially in regions with low image contrast.324

3.3 Example 3: Manual delineation of root images325

Below-ground plant organs can be studied non-invasively using the rhizotron (Nagel et al.326

2012). Figure 4a shows an example gray scale image (width × height: 4872×3248 pixels)327

including the root systems of three rapeseed subjects, obtained from root phenotyping328

experiments at the GROWSCREEN-Rhizo (Nagel et al. 2012). The gold standard for329

evaluation of such images is still manual delineation of the roots by a human expert.330

Lossy compression can alter the appearance of the images, introducing visual distor-331

tions or loss of details that may influence the user’s capability of accurately delineating332

the roots. In Figure 4c we therefore provide a visual comparison of root images at333

different levels of compression with JPEG and the more advanced JPEG 2000.334

At bit rate BR = 0.1 bpp (cf. Eq. (1)), being equivalent to space savings of 98.7%, the335

root structure is still clearly evident and rich in details. This can be obtained e.g. in336

JPEG by setting the quality factor at q = 20. However, when encoding at even lower bit337

rates, compression distortion (e.g., blocking artifacts in JPEG or blurring in JPEG 2000)338
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increases substantially, rendering the thin roots increasingly difficult to recognize (even339

for a trained human observer). At 0.03 bpp (i.e. 99.6% space savings), the JPEG image340

has lost most information and is practically unusable, while in the JPEG 2000 image only341

the thicker roots are still distinguishable. Compression performance of different coding342

standards is assessed quantitatively in Figure 4b using PSNR (Eq. (2)): JPEG 2000 obtains343

image fidelity superior to JPEG at any bit rate, while best image quality is achieved by344

HEVC.345

We conclude that lossy compression is admissible even when subtle structures need to be346

quantified by a human expert. However, care needs to be taken that compression artifacts remain347

close to unnoticeable.348

4 Performance analysis of lossless and lossy codecs in plant349

applications350

The case studies above showed that lossy compression can affect results of quantitative351

evaluation methods. In this section we offer a richer evaluation, including more data352

sets, metrics, and codecs tested systematically at different compression rates. This allows353

us to derive recommendations on which codec to use, at which compression rate, and354

for which task. We focus on segmentation-based methods for images in Section 4.2355

and on growth estimation from videos in Section 4.3. Additionally, we investigate the356

effectiveness of lossless codecs, which not compromise image quality. We start with357

lossless.358

4.1 Lossless coding: space and time savings with no loss in quality359

Compression performance obtained using lossless compression approaches on a 16360

megapixel gray scale image of rapeseed roots (Figure 4a) is shown in Figure 5. A good361

balance of bit rate reduction and codec efficiency (cmp. Table A1) is achieved by JPEG-LS362

and JPEG 2000, while PNG obtains slightly worse results. Overall, with lossless compres-363

sion it is possible to reduce file size considerably (to approximately 35% of uncompressed364

size) with exact reconstruction of the original image and limited computational overhead365

(in most cases less than one second for decoding, cf. Appendix B). Analogous com-366

pression ratios are typically obtained when lossless compression is applied on images367

composed of more than one component (e.g., 3 for RGB color images, or in general M368
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for hyperspectral data cubes), and scaling appropriately the results in Figure 5 (e.g., ×3369

for color, or ×M for hyperspectral) would provide an estimate of expected compression370

performance.371

To elucidate how data size may reflect to transmission times over a network, we372

consider an example scenario in which an 18 megapixel color image of a rapeseed shoot373

(Figure 6b) is acquired in a greenhouse and transmitted to a central processing unit at a374

different physical location (e.g., for processing or storage). Subsequently, the same image375

is downloaded from the central repository where it is stored to a user’s workstation.376

We perform this test during working day, to ensure average network traffic conditions,377

using a workstation and 100 Mbit/s wired network connection. Uploading our test378

image in uncompressed format (53.7 MB) requires 6 seconds, and downloading the379

uncompressed image takes 4.9 seconds. On the other hand, encoding the image with380

JPEG 2000 in lossless mode and transmitting the compressed file (11.3 MB) requires381

overall only 2 seconds, while downloading and decoding the compressed image locally382

requires only 1.6 seconds. Image compression leads in this case to 79% space savings383

and 67% transmission time reduction.384

We conclude that lossless compression does offer significant space savings but for even more385

savings lossy compression is necessary.386

4.2 Lossy compression in segmentation-based shoot image analysis387

Image-based investigations of above-ground plant organs often rely on color images388

acquired from top or side views. Plant segmentation (i.e. the delineation of the image389

regions containing a plant object) represents a fundamental step in most image process-390

ing pipelines for phenotyping applications (Minervini et al. 2014a), and permits us to391

calculate a variety of morphological and color features.392

The accuracy of plant segmentation affects all subsequent analyses, therefore we393

investigate compression performance with respect to automated plant segmentation394

from background. We adopt three color images of plant shoots (including arabidopsis,395

rapeseed, and maize) acquired from different angles (top or side view), with resolutions396

ranging between 5 and 18 megapixels (cf. Figure 6a-c).397

Here, plant segmentation is performed by a pixel-level classifier, which decides if398

a pixel is foreground (plant) or background. We use a support vector machine (SVM)399

operating on color values (Briese et al. 2013), trained on labeled image data, where the400

plant has been delineated manually. The resulting foreground/background classification401

13



is cleaned up using morphological operations to fill holes and remove small objects.402

Figure 6a-c shows example segmentation masks obtained with this method.403

We quantify changes in plant segmentation due to compression using three different404

metrics: (i) the Dice similarity coefficient (DSC, Eq. (5)) as a well established segmentation405

measure, (ii) Projected Leaf Area Error (PLA Error, Eq. (4)) as a plant related segmentation406

measure, and (iii) Kullback-Leibler (KL) divergence (Eq. (3)) on the foreground to see407

how color information is affected (e.g., used to quantify drought stress tolerance under408

varying irrigation (Knüfer et al. 2013) or stress (Berger et al. 2010; Sass et al. 2012)409

conditions).410

As shown in Figure 6d-f, using JPEG 2000 and HEVC standards, it is possible to411

obtain PLA measurements very close to those obtained on the original image, even at412

low bit rates. The oscillating behavior observed for some codecs at very low bit rates is413

due to portions of the background that, due to compression artifacts, occasionally appear414

to the plant segmentation method as belonging to a plant object. Depending on image415

characteristics and segmentation method, approximation errors due to compression may416

lead to an over-estimation (e.g., arabidopsis image, cf. Figure 6d), or an under-estimation417

(e.g., maize image, cf. Figure 6f) of the plant area.418

The accuracy of the segmentation mask (based on which PLA and also several419

features related to plant morphology can be calculated) is measured by the Dice similarity420

coefficient (see Eq. (5)). As shown in Figure 6g-i, JPEG 2000 + ROI offers best performance,421

followed by plain JPEG 2000 and HEVC, whereas WebP and JPEG exhibit an erratic422

behavior.423

Comparing PLA Error to DSC, we observe that codecs obtaining comparable perfor-424

mance in PLA, e.g. JPEG 2000 + ROI and HEVC, differ in their performance in DSC, i.e.425

JPEG 2000 + ROI performs better.426

Color degradation, quantified by the Kullback-Leibler divergence, is minimized427

by JPEG 2000 and HEVC (Figure 6j-l). While JPEG systematically introduces higher428

distortion in a plant’s color, performance of WebP depends on the complexity of the429

image (e.g., cluttered background).430

Notice the difference in bit rate ranges among test images, reflecting how much431

‘compression-friendly’ the content is. For equivalent segmentation or color accuracy,432

the rapeseed and maize images can be compressed at significantly lower bit rates than433

arabidopsis, due to the large uniform background regions of the former as opposed to434

the highly textured background of the latter, i.e. the soil, which is less efficient to encode.435
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Overall, the plots relative to rapeseed (Figure 6e, h, k) and maize (Figure 6f, i, l)436

images reveal that for JPEG 2000 + ROI bit-rates between 0.1 and 0.2 bpp (i.e. less than 1%437

of uncompressed 24 bpp image size) are sufficient to adequately encode such data, while438

for the arabidopsis test image bit rates higher than 0.5 bpp (i.e. 2% of uncompressed439

image size) are recommended (cf. Figure 6d, g, j). As we see from this figure, allowing440

for even higher bit rates does not improve results with respect to the metrics employed441

here.442

In order to give a visual impression of compression performance, Figure 7 shows443

example reconstructed images, after compression at 0.05 bpp. A compression factor of444

1:480 is applied, to reduce uncompressed image size of 57.7 MB to approximately 112 kB.445

With JPEG 2000 + ROI the plant appears identical to the original, while plain JPEG 2000,446

without any prior knowledge on the image regions of interest, is less rich in details and447

the borders of the segmented plant present small errors. WebP severely over-smooths448

the image, thus losing the venation patterns in the leaf. Despite the low bit rate, all such449

images (and corresponding segmentation masks) are visually plausible, as compared450

to the original image. On the other hand, JPEG (using quality settings of q = 10 to451

achieve file size equivalent to other approaches) exhibits noticeable block artifacts and452

color degradation, introducing also larger errors (holes) in the segmentation. All of453

these factors may severely affect accuracy of the phenotypic analyses conducted on JPEG454

compressed image data.455

We conclude that newer lossy compression standards such as JPEG 2000 + ROI do offer456

significant benefits in bit rate reduction without degrading results significantly. However, only457

up to some application-dependent point, since artifacts introduced can severely affect further458

analysis.459

4.3 Local growth estimation of leaves and root tips460

Measuring local growth rates in plant tissues by optical flow analysis is a widely applied461

method (Schmundt et al. 1998; Walter and Schurr 2005; Dhondt et al. 2013; Pal et al. 2013;462

Matos et al. 2014). We investigate how compression affects such measurements, adopting463

two time-lapse sequences (videos) of gray scale images. Example image stills (frames)464

are shown in Figure 8a and d, respectively, of a growing Arabidopsis leaf (11 frames,465

width × height: 640×480 pixels) and a growing Tobacco root tip (60 frames, width ×466

height: 740×570 pixels). Effects of compression on the optical flow field can be accurately467

quantified using the Average End-point Error (AEE, Eq. (7)).468
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Figure 8 shows PSNR and AEE (see Eq. (7)), calculated inside a manually defined469

region of interest, for Arabidopsis leaf and Tobacco root tip sequences, encoded at various470

bit rates. In general, we observe that optical flow calculations are more sensitive to image471

compression than other applications in previous examples. Thus, in order to keep AEE472

values reasonably low, we consider the highest range of bit rates (and quality) possible473

with lossy coding techniques.474

Due to the high similarity between consecutive frames of the image sequences, video475

codecs (VP9, HEVC) provide considerable improvement in PSNR with respect to ap-476

proaches that compress the frames independently (JPEG, JPEG 2000). Providing the477

JPEG 2000 encoder with region-of-interest (ROI) information is beneficial only at lower478

bit rates. Above a certain bit rate (i.e. 1 bpp for the leaf and 0.25 bpp for the root tip),479

foreground is already encoded at the best quality possible and further bit budget is spent480

in background regions. Additionally, at near-lossless coding rates, the underlying effect481

of encoding the ROI (increased dynamic range of the values to encode, due to so-called482

bit plane shifting (Christopoulos et al. 2000)) may reduce coding efficiency further.483

On the other hand, image fidelity is not strictly correlated with the preservation of484

the optical flow fields. Surprisingly, on the shorter arabidopsis leaf sequence (11 frames),485

JPEG obtains the best AEE performance at several bit rates and is always superior to486

HEVC (Figure 8c, f), despite opposite PSNR results (Figure 8b, e). For the longer root tip487

sequence (60 frames), HEVC and VP9 represent the best option for low bit rates, while488

JPEG is still superior at high bit rates.489

We conclude that if lossy compression is needed, JPEG at highest quality levels should be490

preferred, but even then additional 2% AEE due to compression should be expected.491

5 Discussion and conclusions492

While image-based phenotyping is becoming increasingly important and utilized, several493

aspects related to dealing with data fidelity and integrity remain unexplored. In this494

paper we investigate the effects of lossy image compression on phenotyping accuracy495

and offer guidelines on the proper and guided use and reporting of compression in plant496

phenotyping experiments.497

Our first proof of concept experiment (Section 3.1) illustrates that even in the simple498

case of measuring rosette plant area, the most popular form of lossy image compression499

(i.e. images compressed with JPEG) does introduce non-negligible errors in measure-500
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ments. Compression in this case does not cause visually perceptible distortion, but local501

loss of image fidelity does affect the outcome of segmentation: the image processing pro-502

cess that lies beneath the measurement of plant rosette area. More importantly, although503

it appears that with compression PLA is overestimated, the effect of compression on the504

algorithm is not constant: it is not a systematic error. Unfortunately it is not a completely505

random error either: it varies as plants grow (as the ANOVA experiment shows), from506

a time instant to another, and between plants. Although the ANOVA identifies this to507

be a factor, it is more readily seen in scatter plots: ordering of points changes from time508

to time, and even more critically the behavior changes among different plants of the509

same genotype. If compression was a systematic error then this would simply introduce510

a bias (a change in population means) which would not affect any statistical tests. If511

compression was a totally random and uncorrelated to the data error, then this would512

simply imply that larger variance attributed to compression is observed and to account513

for this additional variance a larger sample (more replicates) would merely be necessary,514

in order to match the statistical power of the data without compression. But also this is515

not the case.516

Compression is a highly influential factor also when growth analysis relies on op-517

tical flow fields. Tasks involving the tracking of high contrast structures, e.g. root tip,518

generally prove robust to higher compression ratios, however, for growth analysis JPEG519

compression should be limited to very high quality factors (q ≥ 95). Using more so-520

phisticated compression standards (e.g., JPEG 2000, VP9, HEVC) may not yield better521

results (cmp. Section 4.3). If the image data shows low contrast in relevant image regions,522

lossless compression should be adopted to avoid dramatic degradation in accuracy.523

These findings are illuminating, since when compression is present without a user’s524

knowledge, the measurements would be affected by the compression. Here, we could525

observe these errors because the data are acquired in original uncompressed quality.526

Therefore, users of image-based phenotyping platforms should first identify if compres-527

sion is used in their system, report it in their papers, and analyze its effects by obtaining528

some data without compression.529

There are several practical reasons that do necessitate the use of compression. The530

rapid accumulation of data and the need to archive such data for regulatory compliance531

is the most common. In this case if ample storage is available then without a doubt, as532

our experiments show, the lossless compression options of JPEG-LS or JPEG 2000 should533

be considered, since they can still reduce by 60 to 80% (depending on the image charac-534
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teristics) the amount of data (roughly equivalent to 2-3 bpp per each color channel), while535

perfectly preserving the original image content. Despite obtaining inferior compression536

efficiency with respect to other methods, the PNG standard is ubiquitous on the Web537

and its broad installed codec base eases adoption. The benefits of compression could538

be realized even in depositing or retrieving data from institutional repositories, where539

compression will maximize the utilization of the installed e-infrastructure.540

If larger compression efficiency is required lossy options are necessary. Depending541

also on the complexity of the image content at hand (i.e. images with less complicated542

background), most compression algorithms offer near lossless performance in the 2-3 bpp543

bit rate range, with no major differences observed among algorithms.544

For additional storage savings, below 2 bpp compression efficiency is required. There545

are several scenarios where such efficiency may be necessary. For example, when images546

are acquired in a greenhouse facility or even in the field, and are then transmitted547

to a central location for archival and analysis (e.g., as in the framework proposed by548

(Minervini and Tsaftaris 2013), or in the gigapixel time-lapse panoramic imaging system549

in (Brown et al. 2012)). Another example could be the recent developments towards550

affordable phenotyping where users in developing countries or in rural remote areas551

acquire images using affordable and low computational power devices (e.g., mobile552

phones), and transmit them over wireless communication links (enabled in remote places553

by long-distance connectivity projects (Murillo et al. 2015) or emerging technologies such554

as the Brck2) and the Internet to cloud services (e.g., the iPlant Collaborative (Goff et al.555

2011)), where sophisticated analyses can take place, and results are sent back in response556

(Minervini and Tsaftaris 2013; Puhl 2013). Both of these scenarios involve: a remote557

sensing device, which does not have the computational power to perform analysis; the558

use of a limited communication channel, which may not have the capacity to carry many559

large images; and potentially imaging of plants in non-ideal settings, for example in the560

field (Andrade-Sanchez et al. 2013; Bucksch et al. 2014) or non-uniformly illuminated561

conditions, which increase the complexity of the image content. Thus, storage and562

transmission of the image data represent a (technical and logistic) bottleneck and may563

reduce overall throughput, rendering image file size a key design aspect.564

For compression efficiency below 2 bpp careful evaluation of compression effects and565

choice of compression practice is necessary. If prior to the final deployment of the system,566

a set of uncompressed imaging data of a genotype and a fixed image processing pipeline567

2http://www.brck.com
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are available, direct phenotyping measurements, such as PLA or model errors, can be568

used to evaluate compression. Statistical analyses, such as the one in Section 3.1, should569

be performed and the choice of the compression algorithm and its parameters (e.g., JPEG570

quality factor or bit rate) should be guided accordingly to minimize statistical effects. If571

group based experiments (of different genotypes) are available, changes in group level572

differences can be used to identify suitable compression standards and parameters.573

When populations are not available but some exemplar images are available instead,574

then analyses such as the ones reported in Section 4.2 are recommended. If no imaging575

pipeline is available and human-based image annotation is adopted, visual examination576

and general fidelity metrics (PSNR) or psycho-visual metrics (e.g., structural similarity577

index, SSIM (Wang et al. 2004)) can be used to find suitable choices of compression and578

parameters, such that the user’s capability of performing the analysis (e.g., delineating579

roots) is not affected.580

When an image analysis pipeline is also available we recommend not only the use581

of application related measurements (e.g., PLA growth rates, tracking estimates in root582

tip, and others) but metrics such as segmentation quality and color divergence. They583

not only offer more sensitive evaluation (cmp. DSC vs. PLA Error in Section 4.2) when584

compared to general fidelity metrics (e.g., PSNR) but can help address future changes to585

the analysis pipeline (Soyak et al. 2011; Minervini and Tsaftaris 2013). This is necessary586

for example when performing new analyses to isolate new traits and explain behavior587

not considered during the initial experimental design and data collection.588

In general, the performance of the coding procedures in terms of quality (or, alter-589

natively, error) measures, suitable for the application at hand, can be visualized when590

plotted versus the bit rate achieved by compression. This represents a practical tool591

to operate lossy compression in applications. When designing a phenotyping setup,592

the so-called rate-distortion (R-D) curves (Ortega and Ramchandran 1998) (e.g., those593

employing PLA Error, DSC, or KL Divergence as distortion measure in Figure 6) allow to594

select compression approaches and parameter settings that provide the optimal trade off595

between compression ratio and application accuracy. For a desired level of phenotype596

extraction fidelity (y-axis), the compression methodology providing the lowest bit rate597

(x-axis) is the most efficient and should therefore be adopted.598

Several compression tools are available and the selection of an appropriate image599

compression strategy is not trivial. Therefore, in this paper we compare quantitatively600

a variety of state-of-the-art image and video coding standards, focusing discussion on601
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aspects of practical relevancy: (a) compression efficiency, (b) image fidelity, (c) phenotyp-602

ing accuracy, and (d) encoding/decoding time efficiency. Until specialized compression603

algorithms tailored to the problems of plant phenotyping become ubiquitous (Minervini604

and Tsaftaris 2013; Minervini et al. 2014b), based on our analysis we recommend the605

following. For still images:606

• JPEG 2000 emerges as the approach achieving the best trade off among all parame-607

ters, offering noteworthy (and in several cases top) performance in all experiments608

but motion estimation. When regions of interests are available, for example after609

data analysis, JPEG 2000 + ROI offers an exceptional choice to archive data with610

the highest possible quality and compression efficiency. The limiting factor of JPEG611

2000 is the lack of large installed codec base due to its limited popularity. This612

implies that appropriate software installation on workstations and other computing613

devices is necessary.614

• JPEG should be avoided since it performs poorly in most occasions even though it615

is the first level of choice among users and is ubiquitous.616

When image sequences (or videos) are concerned:617

• JPEG with high quality settings should be used for short sequences, when high bit618

rates are available, and motion estimation for growth will be performed.619

• The new HEVC video coding standard should be used to achieve high space sav-620

ings especially for long sequences (or stacks) of images with static background.621

Furthermore, HEVC is an excellent option for long-term storage of time-lapse se-622

quences for growth estimation or low-resolution video streaming (e.g., transmitting623

a stream of low-resolution previews acquired at the sensor would allow a user to624

remotely check system status and adjust parameters to changing conditions, or625

even operate robotized solutions (Alenya et al. 2013)). Its limitations are the addi-626

tional computational burden introduced by video coding and not a large installed627

codec base, however, the latter is changing rapidly as more software and hardware628

manufacturers will include such codec in their distributions.629

In conclusion, while in recent years, sophisticated computer vision solutions have630

been proposed to address a variety of problems in image-based plant phenotyping, e.g.,631

plant segmentation (Minervini et al. 2014a), leaf and root growth analysis (Schmundt632

et al. 1998), 3D reconstruction (Paulus et al. 2014), leaf shape (Rolland-Lagan et al.633
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2014) and orientation (Dornbusch et al. 2012) analysis, chlorophyll fluorescence analysis634

(Pieruschka et al. 2012), limited attention to the effects of the accumulation of imaging635

data has been given. This paper alerts the phenotyping community that compression636

can be a confounder and suggests best compression strategies for a wide selection of637

applications, adopting off-the-shelf software libraries.638
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Table 1: One way repeated measurement ANOVA of PLA error measured on 19 Ara-
bidopsis (Col-0) replicate plants over a period of 7 days with 20 repeated measurements
of time. ‘Time’ is the within subjects factor and ‘replicate’ is the between.

Factor Sum of Squares Degrees of Freedom Mean Square F Prob>F C

Time (Within) 0.022(0.109) 4.055(72.991)A 0.005(0.001)B 3.654 0.00879

Replicate (Between) 0.178(0.039) 1(18) 0.178(0.002) 81.272 < 0.00001

A Error term values in parenthesis.
B Greenhouse-Geisser corrections are reported to account for deviations from sphericity (Greenhouse-
Geisser ǫ = 0.213).
C Bold font indicates significance at the p < 0.05 level.
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Figure 1: Schematic of a typical encoding and decoding process in lossy image com-
pression, such as JPEG (ITU 1992). The input image is first converted from the original
color space (e.g., RGB) to a representation reducing correlation between color bands (e.g.,
YCbCr (ITU 1995)). Each color component, possibly after some down-sampling, is split
into independent coding units (e.g., blocks of 8×8 pixels). Space-frequency transforma-
tion permits not only spatial decorrelation but identifies information to be selectively
discarded through quantization. The transformed and quantized coefficients are further
compressed by an entropy coding stage using lossless approaches. This results in a bit-
stream arranged according to a predetermined syntax, that can be decoded performing
all previous operations in reverse order, to obtain an approximation of the original image.
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Figure 2: Compression affects growth observations in Arabidopsis. (a) An uncompressed
image of 19 individuals of Arabidopsis thaliana ecotype Col-0 on day 17 after germi-
nation; (b) shows the same image compressed with JPEG; (c) and (d) zoom in detail
of the plant in the blue bounding box uncompressed and compressed, respectively; (e)
illustrates color coded the segmentation outcome of automatically analyzing this plant
using uncompressed or compressed data: green pixels that are identified as plant on
both images, red (false positives), and blue (false negatives), as those identified only in
the compressed or uncompressed image respectively; (f) plots PLA error (%) of the top 5
plants over 6 days covering the days 12-17 after germination (5 plant measurements are
shown only for presentation clarity, and similar trends are observed for all 19 plants).
The same colored dot is used for the same plant.
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Figure 3: (a) Example images used for root growth analysis. Root tracking results
obtained with the method described in (Chavarrı́a-Krauser et al. 2008) are shown as
green lines, where distance between points denotes estimated local growth intensity. (b)
Spatial growth (REGR) profiles obtained.
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Figure 4: (a) Root systems of three rapeseed subjects imaged at the GROWSCREEN-Rhizo
(Nagel et al. 2012). (b) Image fidelity obtained for the image in (a), after compression
with different standards. (c) Detail from (a) (red box), compressed at various bit rates
using the JPEG and JPEG 2000 standards.
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Figure 5: Compression performance obtained by lossless coding standards on the gray
scale root image of Figure 4a. Baseline for the comparison is size of uncompressed image
(the leftmost bar at 8 bpp).
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Figure 6: Compression performance obtained with color images of plant shoots: (a) ara-
bidopsis (width × height: 2448×2048 pixels), (b) rapeseed (width × height: 5184×3456
pixels), (c) maize (width × height: 2048×2448 pixels). Segmentation contour obtained
with the method in (Briese et al. 2013) is overlaid in red. (d)-(f) PLA Error and (j)-(l) KL
Divergence should be as close to 0 as possible. (g)-(i) Best possible DSC value is 100%.
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Figure 7: Left: a rapeseed test image; top and bottom rows: details of this rapeseed test
image (in blue boxes), compressed at 0.05 bpp, using different compression standards. In
the bottom row, the segmentation mask obtained with the method in (Briese et al. 2013)
is overlaid in blue.
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Figure 8: Performance of lossy coding approaches on image data used for optical flow
based analysis: (a)-(c) Arabidopsis leaf sequence, (d)-(f) Tobacco root tip sequence.

36



Appendices829

A Compression software and command line options830

In this section we expand on the standards and outline parameters used and implemen-831

tation details.832

Portable Network Graphics (PNG) (W3C 2003) is a lossless compression standard, which833

uses a filtering function to enable spatial decorrelation and a compression algorithm834

(Deflate) similar to that of the ZIP file format. It is fast in decoding speed and can handle835

both gray scale and color images (RGB).836

JPEG-LS (Weinberger et al. 2000) is a lossless and near-lossless compression standard,837

based on the LOCO-I algorithm (LOw COmplexity LOssless COmpression for Images),838

and features low computational and memory requirements.839

JPEG is a lossy image compression algorithm, based on the discrete cosine transform840

(ITU 1992). JPEG is the most widely adopted compression standard for digital photogra-841

phy (it is default format on most commercial-grade cameras) and for image coding on842

the Web.843

JPEG 2000 (Skodras et al. 2001) is a lossless and lossy image coding standard based on844

the discrete wavelet transform. Notably, JPEG 2000 is capable of native region-of-interest845

(ROI) coding (Christopoulos et al. 2000), a feature allowing to encode foreground image846

regions at a higher quality than background regions.847

WebP is based on the methodology adopted to compress keyframes in the VP8 video848

coding standard (Bankoski et al. 2011) for the purpose of royalty-free lossless and lossy849

image compression.850

VP9 (Mukherjee et al. 2013) is a new open and royalty-free library for lossless and851

lossy video coding3. VP9 employs several modern coding tools and is mainly intended852

for high definition video and targets low decoding complexity.853

High Efficiency Video Coding (HEVC) (Sullivan et al. 2012) is the latest generation video854

coding standard (ITU 2013). Similar to its predecessors (e.g., H.264 and MPEG-4), HEVC855

employs sophisticated techniques for intra prediction and motion compensation, in order856

to address, respectively, spatial and temporal correlation in high definition video signals.857

Codec software implementations adopted in the experiments and command line858

options used to execute the encoders, are listed below.859

3http://www.webmproject.org
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• PNG, libpng v1.6.12 (http://www.libpng.org):860

– Lossless: pnmtopng -compression=9 -comp mem level=9 -paeth861

-comp window bits=8 -comp strategy=filtered862

• JPEG-LS, Hewlett-Packard reference encoder v1.0863

(http://www.hpl.hp.com/research/info_theory/loco/):864

– Lossless: locoe865

• JPEG, libjpeg v9a (http://www.ijg.org):866

– Lossy: cjpeg -dct float -progressive -arithmetic -quality q867

where the quality factor q is an integer in the range from 0 (lowest quality, small868

file) to 100 (best quality, big file).869

• JPEG 2000, Kakadu v7.4 (http://www.kakadusoftware.com):870

– Lossless: kdu compress Creversible=yes871

– Lossy: kdu compress -no weights -rate r872

– Lossy (ROI): kdu compress -no weights Rshift=16 Rlevels=5873

-roi roifile,0.5 -rate r874

where r is a float denoting the desired bit rate (bpp), and roifile is a PGM file875

containing the ROI mask.876

• WebP, libwebp v0.4.1 (https://developers.google.com/speed/webp/):877

– Lossless: cwebp -lossless -m 6 -q 20878

– Lossy: cwebp -q q879

where q is a quality factor in the range from 0 (lowest quality, small file) to 100 (best880

quality, big file).881

• VP9, libvpx v1.3 (http://www.webmproject.org/vp9/):882

– Lossy: vpxenc --codec=vp9 --passes=1 --tune=psnr --end-usage=cbr883

--target-bitrate=r884

where r is a float denoting target bitrate (kbps).885
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• HEVC, HM v16.0 (http://hevc.hhi.fraunhofer.de), and x265, v1.3 (http://886

x265.org):887

– Lossless (gray scale): TAppEncoderStatic --Profile=main-RExt888

--InputChromaFormat=400 --TransquantBypassEnableFlag=1889

--CUTransquantBypassFlagValue=1890

– Lossy: x265 --qp q891

where q is an integer in the range from 0 (best quality, big file) to 51 (lowest quality,892

small file).893

For JPEG-LS and JPEG 2000 we adopt the pre-compiled software libraries provided by894

the authors, whereas for the others we compile the libraries from source code.895

Note that, although HM is the reference implementation of HEVC, x265 achieves896

superior time performance and is used here for lossy compression. On the other hand,897

HM is used for lossless compression, since to this day this feature is not supported by898

x265. To date, lossless compression of color images is not possible with HEVC, due to899

the chroma sub-sampling strategy mandated by current implementations.900

Video codec implementations used in this study accept input data only in the YUV901

4:2:0 format (i.e. one luminance component, Y, followed by two chrominance components,902

U and V, down-sampled by a factor of two both horizontally and vertically). Hence,903

RGB color images are converted to the YCbCr color space (ITU 1995) and chroma sub-904

sampled prior to encoding with VP9 and HEVC (observe that JPEG and WebP perform905

analogous operations internally, as part of their coding strategy, whereas JPEG 2000 does906

not recommend chroma sub-sampling). Gray scale images are embedded into a YUV907

formatted byte stream, by augmenting the luminance component with uniform zero-908

valued chroma components (note that this operation does not affect coding efficiency).909
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B Encoding and decoding execution times910

To illustrate computational complexity of the codec implementations used in this work,911

we outline in Tables A1 and A2, execution times for encoding/decoding of still images912

and video sequences, respectively. Computational experiments are conducted on a913

machine equipped with Intel Core 2 Duo CPU E8200 2.66 GHz and 4 GB memory, running914

64-bit GNU/Linux.915

For lossless compression (cf. Table A1), JPEG-LS and JPEG 2000 obtain encoding916

and decoding times below 1.5 seconds. Fastest decoding is achieved by WebP, which917

however presents higher encoding time than other still image compression standards.918

Encoding and decoding times of HEVC (using the HM implementation) are significantly919

higher than other codecs. Overall, shorter execution times are observed when using lossy920

compression (cf. Table A1). JPEG and JPEG 2000 achieve shortest encoding times, while921

average decoding times of color images remain below one second for all codecs, with922

fastest decoding obtained by WebP.923

For image sequences (cf. Table A2), still image codecs are generally faster at encoding,924

with JPEG 2000 requiring on average less than half a second to encode the test sequences.925

Decoding times are in the same order of magnitude for all codecs (VP9 presents shortest926

decoding times). The JPEG 2000 + ROI approach results in longer execution times than927

JPEG 2000, due to the ROI coding feature and no chroma sub-sampling (i.e. more data to928

process in the entropy coding stage of the encoder). Among video codecs, VP9 is 3 to 4929

times slower than HEVC at encoding, but approximately an order of magnitude faster at930

decoding.931
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Table A1: Average execution times for encoding and decoding still images, expressed as
mean ± standard deviation. Best results (i.e. less time) are highlighted in bold. For lossy
compression, average results are shown for images compressed at a range of bit rates
between 0.02 and 2 bpp.

Standard Gray scale images Color images
Encoding (s) Decoding (s) Encoding (s) Decoding (s)

Lossless
PNG 3.93 ± 0.02 0.63 ± 0.03 5.79 ± 4.29 0.47 ± 0.32
JPEG-LS 0.97 ± 0.03 1.10 ± 0.01 1.36 ± 0.95 1.52 ± 1.05
JPEG 2000 0.74 ± 0.02 0.73 ± 0.08 0.78 ± 0.40 0.78 ± 0.35
WebP 8.60 ± 0.10 0.46 ± 0.00 7.27 ± 4.22 0.37 ± 0.26
HEVC (HM) 96.24 ± 0.14 2.75 ± 0.02 – –

Lossy
JPEG 0.40 ± 0.09 0.30 ± 0.09 0.42 ± 0.25 0.34 ± 0.21
JPEG 2000 0.40 ± 0.11 0.21 ± 0.09 0.44 ± 0.30 0.27 ± 0.20
JPEG 2000 + ROI 0.67 ± 0.18 0.21 ± 0.07 1.13 ± 0.69 0.33 ± 0.24
WebP 3.46 ± 0.27 0.33 ± 0.05 2.26 ± 1.39 0.20 ± 0.12
HEVC (x265) 13.77 ± 2.02 1.36 ± 0.24 8.21 ± 5.14 0.75 ± 0.51

Table A2: Average execution times obtained to encode and decode the sequences for
optical flow analysis at a variety of bit rates using lossy coding standards, expressed as
mean ± standard deviation. Best results (i.e. less time) are highlighted in bold.

Standard Arabidopsis leaf Root tip
Encoding (s) Decoding (s) Encoding (s) Decoding (s)

JPEG 0.21 ± 0.06 0.17 ± 0.07 0.96 ± 0.17 0.73 ± 0.21
JPEG 2000 0.14 ± 0.03 0.10 ± 0.04 0.41 ± 0.07 0.28 ± 0.09
JPEG 2000 + ROI 0.54 ± 0.07 0.21 ± 0.08 2.64 ± 0.09 0.84 ± 0.39
VP9 6.82 ± 1.39 0.05 ± 0.04 30.29 ± 7.36 0.16 ± 0.02
HEVC (x265) 2.08 ± 0.40 0.47 ± 0.09 6.75 ± 3.51 1.61 ± 0.64
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