001     276443
005     20210129220903.0
024 7 _ |a 10.1109/MSP.2015.2405111
|2 doi
024 7 _ |a 0740-7467
|2 ISSN
024 7 _ |a 1053-5888
|2 ISSN
024 7 _ |a 1558-0792
|2 ISSN
024 7 _ |a 1558-1284
|2 ISSN
024 7 _ |a WOS:000356539400017
|2 WOS
024 7 _ |a altmetric:6590682
|2 altmetric
037 _ _ |a FZJ-2015-06882
082 _ _ |a 620
100 1 _ |a Minervini, Massimo
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Image Analysis: The New Bottleneck in Plant Phenotyping
260 _ _ |a New York, NY
|c 2015
|b IEEE
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1448959160_13517
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Plant phenotyping is the identification of effects on the phenotype (i.e., the plant appearance and performance) as a result of genotype differences (i.e., differences in the genetic code) and the environmental conditions to which a plant has been exposed [1]?[3]. According to the Food and Agriculture Organization of the United Nations, large-scale experiments in plant phenotyping are a key factor in meeting the agricultural needs of the future to feed the world and provide biomass for energy, while using less water, land, and fertilizer under a constantly evolving environment due to climate change. Working on model plants (such as Arabidopsis), combined with remarkable advances in genotyping, has revolutionized our understanding of biology but has accelerated the need for precision and automation in phenotyping, favoring approaches that provide quantifiable phenotypic information that could be better used to link and find associations in the genotype [4]. While early on, the collection of phenotypes was manual, currently noninvasive, imaging-based methods are increasingly being utilized [5], [6]. However, the rate at which phenotypes are extracted in the field or in the lab is not matching the speed of genotyping and is creating a bottleneck [1].
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 1
700 1 _ |a Tsaftaris, Sotirios A.
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1109/MSP.2015.2405111
|g Vol. 32, no. 4, p. 126 - 131
|0 PERI:(DE-600)2035189-6
|n 4
|p 126 - 131
|t IEEE signal processing magazine
|v 32
|y 2015
|x 0740-7467
856 4 _ |u https://juser.fz-juelich.de/record/276443/files/07123050-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276443/files/07123050-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276443/files/07123050-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276443/files/07123050-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276443/files/07123050-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276443/files/07123050-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:276443
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129394
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE SIGNAL PROC MAG : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE SIGNAL PROC MAG : 2014
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21