001     276445
005     20210129220903.0
024 7 _ |a 10.1016/j.patrec.2015.10.013
|2 doi
024 7 _ |a 0167-8655
|2 ISSN
024 7 _ |a 1872-7344
|2 ISSN
024 7 _ |a WOS:000383822500011
|2 WOS
024 7 _ |a altmetric:4770297
|2 altmetric
037 _ _ |a FZJ-2015-06884
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Minervini, Massimo
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Finely-grained annotated datasets for image-based plant phenotyping
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1485963229_20950
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Image-based approaches to plant phenotyping are gaining momentum providing fertile ground for several interesting vision tasks where fine-grained categorization is necessary, such as leaf segmentation among a variety of cultivars, and cultivar (or mutant) identification. However, benchmark data focusing on typical imaging situations and vision tasks are still lacking, making it difficult to compare existing methodologies. This paper describes a collection of benchmark datasets of raw and annotated top-view color images of rosette plants. We briefly describe plant material, imaging setup and procedures for different experiments: one with various cultivars of Arabidopsis and one with tobacco undergoing different treatments. We proceed to define a set of computer vision and classification tasks and provide accompanying datasets and annotations based on our raw data. We describe the annotation process performed by experts and discuss appropriate evaluation criteria. We also offer exemplary use cases and results on some tasks obtained with parts of these data. We hope with the release of this rigorous dataset collection to invigorate the development of algorithms in the context of plant phenotyping but also provide new interesting datasets for the general computer vision community to experiment on. Data are publicly available at http://www.plant-phenotyping.org/datasets.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a 583 - Innovative Synergisms (POF3-583)
|0 G:(DE-HGF)POF3-583
|c POF3-583
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fischbach, Andreas
|0 P:(DE-Juel1)129315
|b 1
|u fzj
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 2
|u fzj
700 1 _ |a Tsaftaris, Sotirios A.
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1016/j.patrec.2015.10.013
|g p. S0167865515003645
|0 PERI:(DE-600)1466342-9
|p 80–89
|t Pattern recognition letters
|v 81
|y 2015
|x 0167-8655
856 4 _ |u http://www.sciencedirect.com/science/article/pii/S0167865515003645
856 4 _ |u https://juser.fz-juelich.de/record/276445/files/1-s2.0-S0167865515003645-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276445/files/1-s2.0-S0167865515003645-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276445/files/1-s2.0-S0167865515003645-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276445/files/1-s2.0-S0167865515003645-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276445/files/1-s2.0-S0167865515003645-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276445/files/1-s2.0-S0167865515003645-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:276445
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129315
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129394
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-583
|2 G:(DE-HGF)POF3-500
|v Innovative Synergisms
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PATTERN RECOGN LETT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21