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Within the framework of unified approach we study the Casimir-Lifshitz interaction, the van der Waals

friction force, and the radiative heat transfer at nonequilibrium conditions when the interacting bodies are at

different temperatures and when they move relative to each other with the arbitrary velocity V. The analysis is

focused on the surface-surface and surface-particle configurations. We show that relativistic effects give rise to

a mixing of the contributions from the electromagnetic waves with different polarization to the heat transfer

and the interaction forces. We find that these effects are of the order �V /c�2. The limiting case when one of the

bodies is sufficiently rarefied gives the heat transfer and the interaction forces between a moving small particle

and a surface. We also calculate the friction force acting on a particle moving with an arbitrary velocity relative

to the black body radiation.
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I. INTRODUCTION

All bodies are surrounded by a fluctuating electromag-

netic field due to the thermal and quantum fluctuations of the

charge and current density inside the bodies. Outside the

bodies this fluctuating electromagnetic field exists partly in

the form of propagating electromagnetic waves and partly in

the form of evanescent waves. The theory of the fluctuating

electromagnetic field was developed by Rytov.1–3 A great va-

riety of phenomena such as Casimir-Lifshitz forces,4 near-

field radiative heat transfer,5 and friction forces6 can be de-

scribed using this theory.

Lifshitz4 used the Rytov’s theory to formulate a very gen-

eral theory of the dispersion interaction in the framework of

the statistical physics and macroscopic electrodynamics. The

Lifshitz theory provides a common tool to deal with disper-

sive forces in different field of science �physics, biology, and

chemistry� and technology.

The Lifshitz theory is formulated for systems at thermal

equilibrium. At present there is an interest in the study of

systems out of the thermal equilibrium �see Ref. 7 and ref-

erence therein�. The principal interest in the study of systems

out of thermal equilibrium is connected to the possibility of

tuning the interaction in both strength and sign.8,9 Such sys-

tems also give a way to explore the role of thermal fluctua-

tions usually masked at thermal equilibrium by the T=0 K

component, which dominates the interaction up to very large

distances, where the actual total force results in to be very

small. The Casimir-Lifshitz force was measured at very large

distances, and it was shown that the thermal effects of the

Casimir-Lifshitz interaction are in agreement with the theo-

retical prediction.8 This measurement was done out of ther-

mal equilibrium, where thermal effects are stronger.

Further thermal nonequilibrium effects were explored by

Polder and Van Hove,5 who calculated the heat flux between

two parallel plates. At present there is an increasing interest

for studying near-field radiative heat transfer10–15 which is

connected with the development of a near-field scanning

thermal microscope.16 The existing studies are limited

mostly by the case when the interacting bodies have different

temperatures but they are at rest. For recent review of near-
field radiative heat transfer between bodies, which are at rest,
see Refs. 17 and 18.

Other nonequilibrium effects are realized for bodies mov-
ing relative to each other. In Ref. 6 we used the dynamical
modification of the Lifshitz theory to calculate the friction
force between two plane parallel surfaces in relative motion
with velocity V. The calculation of the van der Waals friction
is more complicated than of the Casimir-Lifshitz force and
the radiative heat transfer because it requires the determina-
tion of the electromagnetic field between moving boundaries.
The solution can be found by writing the boundary condi-
tions on the surface of each body in the rest reference frame
of this body. The relation between the electromagnetic fields
in the different reference frames is determined by the Lorenz
transformation. In Ref. 6 the electromagnetic field in the
vacuum gap between the bodies was calculated to linear or-
der in V /c. It was shown that linear terms in the electromag-
netic field give the contribution to the friction force of the
order �V /c�2. Thus, these linear terms were neglected in Ref.
6 and the resulting formula for friction force is accurate to
order �V /c�2. The same approximation was used in Ref. 19 to
calculate the frictional drag between quantum wells and in

Refs. 20 and 21 to calculate the friction force between plane

parallel surfaces in normal relative motion. For a recent re-

view of the van der Waals friction, see Ref. 18.

In this paper within the framework of unified approach we

study the Casimir-Lifshitz interaction, the van der Waals fric-

tion force, and the radiative heat transfer at nonequilibrium

conditions when the interacting bodies are at different tem-

peratures and when they move relative to each other with the

arbitrary velocity V. Our study is focused on the surface-

surface and surface-particle configurations. In comparison

with previous studies we consider more general nonequilib-

rium conditions. In the existing literature the Casimir-

Lifshitz interaction and the radiative heat transfer for the

surface-surface configuration were studied only for the sys-

tems out of the thermal equilibrium.7,17,18 The van der Waals

friction is studied for this configuration only for systems at

thermal equilibrium.18 In Sec. II we calculate the fluctuating

electromagnetic field in the vacuum gap between two plane
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parallel surfaces, moving in parallel relative to each other. In

comparison with previous calculations6,19–21 we do not make

any approximation in the Lorentz transformation of the elec-

tromagnetic field by means of which we can determine the

field in one inertial reference frame, knowing the same field

in another reference frame. Thus, our solution of the electro-

magnetic problem is exact. Knowing the electromagnetic

field we calculate the stress tensor and the Poynting vector,

which determines the interaction force and the heat transfer,

respectively. We calculate the friction force, the conservative

force, and the radiative heat transfer in Secs. III–V, respec-

tively. Upon going to the limit when one of the bodies is

rarefied we obtain the interaction force and the heat transfer

for a small particle-surface configuration. In Sec. VI we cal-

culate the friction force on a small particle moving relative to

black body radiation. The same problem was considered in

Ref. 22. In comparison with this study our treatment is rela-

tivistic and we take into account the contribution not only

from the electric dipole moment but also from the magnetic

moment of the particle. Recently23 it was shown that the

magnetic moment gives the most important contribution to

the near-field radiative heat transfer for metallic particles.

The same is true for the friction force. The conclusions are

given in Sec. VII.

II. CALCULATION OF THE FLUCTUATING

ELECTROMAGNETIC FIELD

We consider two semi-infinite solids having flat parallel

surfaces separated by a distance d and moving with velocity

V relative to each other �see Fig. 1�. We introduce the two

coordinate systems K and K� with coordinate axes xyz and

x�y�z�. In the K system body 1 is at rest while body 2 is

moving with the velocity V along the x axis �the xy and x�y�

planes are in the surface of body 1, the x and x� axes have

the same direction, and the z and z� axes point toward body

2�. In the K� system body 2 is at rest while body 1 is moving

with velocity −V along the x axis. Since the system is trans-

lational invariant in the x= �x ,y� plane, the electromagnetic

field can be represented by the Fourier integrals

E�x,z,t� = �
−�

�

d�� d2q

�2��2
eiq·x−i�tE�q,�,z� , �1�

B�x,z,t� = �
−�

�

d�� d2q

�2��2
eiq·x−i�tB�q,�,z� , �2�

where E and B are the electric and magnetic induction field,

respectively, and q is the two-dimensional wave vector in xy

plane. After Fourier transformation it is convenient to de-

compose the electromagnetic field into s- and p-polarized

components. For the p- and s-polarized electromagnetic

waves the electric field E�q ,� ,z� is in plane of incidence

and perpendicular to that plane, respectively. In the vacuum

gap between the bodies the electric field E�q ,� ,z� and the

magnetic induction field B�q ,� ,z� can be written in the form

E�q,�,z� = �vsn̂s + vpn̂p
+�eikzz + �wsn̂s + wpn̂p

−�e−ikzz, �3�

B�q,�,z� =
c

�
���k+ � n̂s�vs + �k+ � n̂p

+�vp�eikzz

+ ��k− � n̂s�ws + �k− � n̂p
−�wp�e−ikzz� , �4�

where k�=q� ẑkz, kz= ��� /c�2−q2�1/2, n̂s= �ẑ� q̂�

= �−qy ,qx ,0� /q, n̂p
�= �k̂�� n̂s�= ��qxkz , �qykz ,q2� / �kq�, and

k=� /c. At the surfaces of the bodies the amplitude of the

outgoing electromagnetic wave must be equal to the ampli-

tude of the reflected wave plus the amplitude of the radiated

wave. Thus, the boundary conditions for the electromagnetic

field at z=0 in the K reference frame can be written in the

form

vp�s� = R1p�s���,q�wp�s� + E1p�s�
f ��,q� , �5�

where R1p�s���� is the reflection amplitude for surface 1 for

the p�s�-polarized electromagnetic field and E1p�s�
f ��� is the

amplitude of the fluctuating electric field radiated by body 1

for a p�s�-polarized wave. In the K� reference frame the elec-

tric field can be written in the form

E��q�,��,z� = �vs�n̂s� + vp�n̂p�
+�eikzz + �ws�n̂s� + wp�n̂p�

−�e−ikzz,

�6�

where q�= �qx� ,qy ,0�, qx�= �qx−�k�	, ��= ��−Vqx�	, 	
=1 /�1−�2, �=V /c, n̂s�= �−qy ,qx� ,0� /q�, n̂p�

�

= ��qx�kz , �qykz ,q�
2� / �k�q��, and

q� = 	�q2 − 2�kqx + �2�k2 − qy
2� .

The boundary conditions at z=d in the K� reference frame

can be written in a form similar to Eq. �5�, as

wp�s�� = e2ikzdR2p�s����,q��vp�s�� + eikzdE2p�s��
f ���,q�� , �7�

where R2p�s���� is the reflection amplitude for surface 2 for

p�s�-polarized electromagnetic field and E2p�s��
f ��� is the am-

plitude of the fluctuating electric field radiated by body 2 for

a p�s�-polarized wave. A Lorentz transformation for the elec-

tric field gives

Ex� = Ex, Ey� = �Ey − �Bz�	, Ez� = �Ez + �By�	 . �8�

Using Eqs. �3�, �4�, �6�, and �8� we get

vp� =
k�	

kqq�
�− �kzqyvs + �q2 − �kqx�vp� , �9�

2

1

x

z
V

FIG. 1. Two semi-infinite bodies with plane parallel surfaces

separated by a distance d. The upper solids moves parallel to other

with velocity V.
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wp� =
k�	

kqq�
��kzqyws + �q2 − �kqx�wp� , �10�

vs� =
k�	

kqq�
��kzqyvp + �q2 − �kqx�vs� , �11�

ws� =
k�	

kqq�
�− �kzqywp + �q2 − �kqx�ws� . �12�

Substituting Eqs. �9�–�12� in Eq. �7� and using Eq. �5� we get

�q2 − �kqx�Dppwp + �kzqyDspws

= e2ikzdR2p� ��q2 − �kqx�E1p
f − �kzqyE1s

f � +
kqq�

k�	
eikzdE2p�

f ,

�13�

�q2 − �kqx�Dssws − �kzqyDpswp

= e2ikzdR2s� ��q2 − �kqx�E1s
f + �kzqyE1p

f � +
kqq�

k�	
eikzdE2s�

f ,

�14�

where

Dpp = 1 − e2ikzdR1pR2p� , Dss = 1 − e2ikzdR1sR2s� ,

Dsp = 1 + e2ikzdR1sR2p� , Dps = 1 + e2ikzdR1pR2s� ,

R2p�s�� =R2p�s���� ,q��. From Eqs. �13�, �14�, and �5� we get

wp = 	��q2 − �kqx�
2R2p� Dss − �2kz

2
qy

2
R2s� Dsp�E1p

f e2ikzd

− �kzqy�q
2 − �kqx��R2p� + R2s� �E1s

f e2ikzd

+
kqq�

k�	
��q2 − �kqx�DssE2p�

f − �kzqyDspE2s�
f�eikzd

−1,

�15�

vp = 	��q2 − �kqx�
2Dss + �2kz

2
qy

2
Dsp�E1p

f − �kzqy�q
2

− �kqx�R1p�R2p� + R2s� �e2ikzdE1s
f +

kqq�

k�	
R1p��q2

− �kqx�DssE2p�
f − �kzqyDspE2s�

f�eikzd

−1, �16�

ws = 	��q2 − �kqx�
2R2s� Dpp − �2kz

2
qy

2
R2p� Dps�E1s

f e2ikzd

+ �kzqy�q
2 − �kqx��R2p� + R2s� �E1p

f e2ikzd

+
kqq�

k�	
��q2 − �kqx�DppE2s�

f + �kzqyDpsE2p�
f �eikzd

−1,

�17�

vs = 	��q2 − �kqx�
2Dpp + �2kz

2
qy

2
Dps�E1s

f + �kzqy�q
2

− �kqx�R1p�R2p� + R2s� �e2ikzdE1p
f +

kqq�

k�	
R1s��q

2

− �kqx�DppE2s�
f + �kzqyDpsE2p�

f �eikzd

−1, �18�

where


 = �q2 − �kqx�
2DssDpp + �2kz

2
qy

2
DpsDsp.

The fundamental characteristic of the fluctuating electro-

magnetic field is the correlation function, determining the

average product of amplitudes Ep�s�
f �q ,��. According to the

general theory of the fluctuating electromagnetic field �see

for example Ref. 18�,

��Ep�s�
f �q,���2
 =

��2

2c2�kz�
2�n��� +

1

2
���kz + kz

���1 − �Rp�s��
2�

+ �kz − kz
���Rp�s�

� − Rp�s��� , �19�

where �. . .
 denotes statistical average over the random field.

We note that kz is real for q�� /c �propagating waves� and

purely imaginary for q
� /c �evanescent waves�. The Bose-

Einstein factor

n��� =
1

e��/kBT − 1
.

Thus for q�� /c and q
� /c the correlation functions are

determined by the first and the second terms in Eq. �19�,
respectively.

III. CALCULATION OF THE FRICTION FORCE

The force which acts on the surface of body 1 can be

calculated from the Maxwell stress tensor �ij, evaluated at

z=0,

�ij =
1

4�
�

0

�

d�� d2q

�2��2
��EiE j

�
 + �Ei
�
E j
 + �BiB j

�
 + �Bi
�
B j


− �ij��E · E�
 + �B · B�
��z=0. �20�

Using Eqs. �3� and �4� for the x component of the force we

get

�xz =
1

4�
�

0

�

d�� d2q

�2��2

qx

k2
��kz + kz

�����wp�2
 + ��ws�
2
����

− ��vp�2
 − ��vs�
2
� + �kz − kz

���wpvp
� + wsvs

� − c.c.
� .

�21�

Substituting Eqs. �15�–�18� for the amplitudes of the electro-

magnetic field in Eq. �21�, and performing averaging over

the fluctuating electromagnetic field with the help of Eq.

�19�, we get the x component of the force
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Fx = �xz =
�

8�3�
0

�

d��
q��/c

d2q
qx

�
�2
��q2 − �kqx�

2 + �2kz
2
qy

2�

� ��q2 − �kqx�
2�1 − �R1p�2��1 − �R2p� �2��Dss�

2

+ �2kz
2
qy

2�1 − �R1p�2��1 − �R2s� �2��Dsp�2

+ �p ↔ s���n2���� − n1����

+
�

2�3�
0

�

d��
q
�/c

d2q
qx

�
�2
��q2 − �kqx�

2

+ �2kz
2
qy

2�e−2�kz�d��q2 − �kqx�
2Im R1p Im R2p� �Dss�

2

− �2kz
2
qy

2Im R1p Im R2s� �Dsp�2 + �p ↔ s���n2����

− n1���� , �22�

where

ni��� =
1

e��/kBTi − 1
,

where T1 and T2 are the temperatures for bodies 1 and 2,

respectively. The symbol �p↔s� denotes the terms which

can be obtained from the preceding terms by permutation of

the indexes p and s. The first term in Eq. �22� represents the

contribution to the friction from propagating waves �q
�� /c�, and the second term from the evanescent waves �q

� /c�. If in Eq. �22� one neglects the terms of the order �2

then the contributions from waves with p and s polarization

will be separated. In this case Eq. �22� is reduced to the

formula obtained in Ref. 6. Thus, to the order �2 the mixing

of waves with different polarization can be neglected, what

agrees with the results obtained in Ref. 6. At T=0 K the

propagating waves do not contribute to friction, but the con-

tribution from evanescent waves is not equal to zero. Taking

into account that n�−��=−1−n��� from Eq. �22� we get fric-

tion mediated by the evanescent electromagnetic waves at

zero temperature �in literature this type of friction is named

as quantum friction24�,

Fx = −
�

�3�
0

�

dqy�
0

�

dqx�
0

qxV

d�
qx

�
�2
��q2 − �kqx�

2

+ �2kz
2
qy

2�e−2�kz�d��q2 − �kqx�
2 Im R1p Im R2p� �Dss�

2

− �2kz
2
qy

2 Im R1p Im R2s� �Dsp�2 + �p ↔ s�� . �23�

Figure 2 shows the dependence of the frictional stress be-

tween semi-infinite bodies on the velocity V at different

separation d. In the calculations the Fresnel formulas for the

reflection amplitude were used with the Drude permittivity �
for copper. The frictional stress initially increases with ve-

locity, reaches a maximum, and then decreases at large val-

ues of the velocity. The presence of maximum is connected

with the resonances which are present in the integrand for the

friction force due to the coupled plasmon-polariton of both

surfaces.17,18 Doppler shift leads to the displacement of reso-

nances relative to each other. If this displacement becomes

larger than the width of resonance then this leads to the de-

crease in friction force when the velocity increases.

The friction force acting on a small particle moving in

parallel to a flat surface can be obtained from the friction

between two semi-infinite bodies in the limit when one of the

bodies is sufficiently rarefied. For d��T=c� /kBT, in Eq.

�22� we can neglect the first term, and in the second term we

can integrate over the whole q plane and put kz� iq. We will

assume that the rarefied body consists of small metal par-

ticles, which have the electric dipole moment and the mag-

netic moment. The dielectric permittivity and magnetic per-

meability of this body, say body 2, is close to unity, i.e., �2

−1→4�n�E�1 and �2−1→4�n�H�1, where n is the

concentration of particles in body 2, �E and �H are their

electric and magnetic susceptibilities. To linear order in the

concentration n the reflection amplitudes are

R2p =
�2kz − ��2�2k2 − q2

�2kz + ��2�2k2 − q2
�

�2 − 1

�2 + 1
� 2�n�E,

R2s =
�2kz − ��2�2k2 − q2

�2kz + ��2�2k2 − q2
�

�2 − 1

�2 + 1
� 2�n�H.

The friction force acting on a particle moving in parallel to a

plane surface can be obtained as the ratio between the change

of the frictional shear stress between two surfaces after dis-

placement of body 2 by small distance dz, and the number of

the particles in a slab with thickness dz,

Fx
part = �d���z�

ndz
�

z=d

=
2�

�2�
0

�

d�� d2q
qxq

q2 − �2qy
2e−2qd�n2����

− n1�����q2�Im Rp Im �E� + Im Rs Im �H� �

+ �2qy
2�Im Rp Im �H� + Im Rs Im �E��� , �24�

where �E�H�� =�E�H�����. For a spherical particle with radius

R the electric and magnetic susceptibilities are given by25

�E = R3
� − 1

� + 2
, �25�

lo
g

σ
(N

/m
)

2

0

-2

-4

-6

0 2 4 6 8

log V (m/s)

1

2

FIG. 2. �Color online� The velocity dependence of the frictional

stress acting between two semi-infinite bodies at �1� d=10 nm and

�2� d=100 nm with parameters chosen to correspond to copper

��−1=2.5�1013 s−1 and �p=1.6�1016 s−1�. �The base of the loga-

rithm is 10.�
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�H = −
R3

2
�1 −

3

R2�2
+

3

R�
cot R�� , �26�

where �=k��−1. Figure 3 shows the velocity dependence of

the friction force, which acts on a small copper particle with

R=10 nm, moving above the copper sample at d=20 nm.

The contributions from the electric dipole and magnetic mo-

ments are shown separately. At small velocities the contribu-

tion from the magnetic moment is seven orders of magnitude

larger than the contribution from the electric dipole moment.

IV. CALCULATION OF THE CONSERVATIVE FORCE

BETWEEN MOVING BODIES

The z component of the force is determined by zz compo-

nent of the Maxwell stress tensor

�zz = −
1

4�
�

0

�

d�� d2q

�2��2

kz

k2
��kz + kz

�����wp�2
 + ��ws�
2


+ ��vp�2
 + ��vs�
2
� + �kz − kz

���wpvp
� + wsvs

� + c.c.
� .

�27�

One has to subtract the infinite vacuum contribution to the

force which does not depend on separation d.4,26 Substituting

Eqs. �15�–�18� into Eq. �27�, and averaging over the fluctu-

ating electromagnetic field with the help of Eq. �19�, and

after subtraction of the vacuum term, we get the z component

of the force,

Fz = �zz = −
�

4�3
Re�

0

�

d�� d2q
kz



e2ikzd��q2

− �kqx�
2�R1pR2p� Dss + R1sR2s� Dpp� − �2kz

2
qy

2�R1pR2s� Dsp

+ R1sR2p� Dps���1 + n1��� + n2����� . �28�

At T1=T2=0 K, Eq. �28� takes the form

Fz = −
�

4�3
Re	�

0

�

d�� d2q

− �
−�

�

dqy�
0

�

dqx�
0

qxV

d�
 kz



e2ikzd��q2

− �kqx�
2�R1pR2p� Dss + R1sR2s� Dpp� − �2kz

2
qy

2�R1pR2s� Dsp

+ R1sR2p� Dps��. �29�

If in Eq. �28� one neglects the terms of the order �2, then, as

in the case of friction, the contributions from the waves with

p and s polarization will be separated. In this case Eq. �28�
reduces to

Fz = −
�

4�3
Re�

0

�

d�� d2qkz� 1

R1p
−1

R2p�
−1

e−2ikzd − 1

+
1

R1s
−1

R2s�
−1

e−2ikzd − 1
��1 + n1��� + n2����� . �30�

If we put V=0 and use the Fresnel’s formulas for the reflec-

tion amplitudes, then Eq. �30� reduces to the formula ob-

tained by Lifshitz.4 Lifshitz have shown that at T1=T2

=0 K it is convenient to transform � integration along the

real axis into the integral along the imaginary axis in the

upper half of the complex � plane. For a rarefied body, simi-

larly as in Sec. III, from Eq. �28� we get the van der Waals

interaction between a small particle and plane surface,

Fz = −
�

�2
Im�

0

�

d�� d2q
kz

2
e2ikzd

�q2 − �kqx�
2 + �2kz

2
qy

2 ��q2

− �kqx�
2�Rp�E� + Rs�H� � − �2kz

2
qy

2�Rp�H� + Rs�E����1

+ n1��� + n2����� . �31�

V. CALCULATION OF THE RADIATIVE HEAT

TRANSFER BETWEEN MOVING BODIES

The radiative energy transfer between the bodies is deter-

mined by the ensemble average of the Poynting vector. In the

case of two plane parallel surfaces the heat flux across the

surface 1 is given by18

�S1z�r�
� = �c/8���E�r� � B��r�
� + c.c.

=
ic2

8��
	�E�r� ·

d

dz
E��r�� − c.c.


z=0

. �32�

Using Eqs. �3�, �4�, and �32� we get equations for the heat

obtained by the body 1, which are very similar to Eqs. �21�
and �22�,

S1 =
1

4�
�

0

�

d�� d2q

�2��2

�

k2
��kz + kz

�����wp�2
 + ��ws�
2


− ��vp�2
 − ��vs�
2
� + �kz − kz

����wpvp
� + wsvs

� − c.c.�
� .

�33�

After averaging of the product of the components of the fluc-

tuating electromagnetic field in the same way as in Sec. III

we get

0 2 4 6 8

-18

-22

-26

-30

log V (m/s)

lo
g

F
(N

)
x

magnetic

electric

FIG. 3. �Color online� The velocity dependence of the friction

force acting on small copper particle with radius R=10 nm moving

above a copper sample at the separation d=20 nm. The contribu-

tions from the electric dipole moment and the magnetic moment are

shown separately. �The base of the logarithm is 10.�

THEORY OF THE INTERACTION FORCES AND THE… PHYSICAL REVIEW B 78, 155437 �2008�

155437-5



S1 =
�

8�3�
0

�

d��
q��/c

d2q
�

�
�2
��q2 − �kqx�

2 + �2kz
2
qy

2�

� ��q2 − �kqx�
2�1 − �R1p�2��1 − �R2p� �2��Dss�

2 + �2kz
2
qy

2�1

− �R1p�2��1 − �R2s� �2��Dsp�2 + �p ↔ s���n2���� − n1����

+
�

2�3�
0

�

d��
q
�/c

d2q
�

�
�2
��q2 − �kqx�

2

+ �2kz
2
qy

2�e−2�kz�d��q2 − �kqx�
2 Im R1p Im R2p� �Dss�

2

− �2kz
2
qy

2 Im R1p Im R2s� �Dsp�2 + �p ↔ s���n2����

− n1���� . �34�

Equation �34� generalizes the equations for the heat transfer

between two surfaces which are at the rest in the K reference

frame5,11 to the case when the surfaces are moving relative to

each other. There is also the heat S2 obtained by the body 2

in the K� reference frame. Actually, S1 and S2 are the same

quantities, looked at from different coordinate systems.

These quantities are related by the equation

FxV = S1 + S2/	 . �35�

For the limiting case of rarefied body, similarly as in Sec.

III, from Eq. �34� we get the contribution from evanescent

waves to the heat adsorbed by a semi-infinite solid at d

��T in the K reference frame for the particle-surface con-

figuration,

S =
2�

�2�
0

�

d�� d2q
q�

q2 − �2qy
2e−2qd�n2���� − n1����

� �q2�Im Rp Im �E� + Im Rs Im �H� � + �2qy
2�Im Rp Im �H�

+ Im Rs Im �E��� . �36�

The heat adsorbed by a particle can be determined from Eq.

�35�.

VI. CALCULATION OF THE FRICTION FORCE ON A

SMALL NEUTRAL PARTICLE MOVING RELATIVE TO

BLACK BODY RADIATION

We consider a small neutral particle moving relative to

black body radiation. We introduce two reference frame K

and K�. The thermal radiation is in equilibrium in the K

reference frame, and the particle is at rest in the K� reference

frames. We assume that the particle moves with velocity V

along the x axis. The relation between the x components of

the momentum in the different reference frames is given by

px = �px� + �E0/c�	 , �37�

where E0 is the rest energy of the particle. The rest energy

can change due to thermal radiation of the particle. From Eq.

�37� we get

dpx

dt
=

dpx�

dt�
+

V

c2

dE0

dt�
. �38�

According to the Einstein’s law

dm0

dt�
=

1

c2

dE0

dt�
, �39�

where m0 is the rest mast of the particle. Taking into account

that

dpx

dt
=

d�m0V	�

dt
=

dm0

dt�
V + m0

d�V	�

dt
�40�

from Eqs. �38�–�40� we get

m0

d�V	�

dt
=

dpx�

dt�
. �41�

In the rest reference frame, due to symmetry, the total radi-

ated momentum from the dipole and magnetodipole radiation

is identically zero. Thus, the change in momentum of the

particle in the rest reference frame is determined by the Lo-

renz force Fx� acting on the particle from the external elec-

tromagnetic field associated with the thermal radiation ob-

served in this reference frame. The dynamics of the particle

in the K reference frame is determined by the equation

m0

d�V	�

dt
= Fx�. �42�

Equation �42� does not contain force from the thermal elec-

tromagnetic field radiated by the particle. Thus, from Eq.

�42� it follows that, contrary to the claim of the authors of

Ref. 27, the thermal radiation of the particle cannot produce

any acceleration. In the K� reference frame the Lorenz force

on the particle is determined by the expression28,29

Fx� =
�

�x�
�pe� · E�

��r��
r�=r
0�

+
�

�x�
�pm� · B�

��r��
r�=r
0�
.

�43�

Writing the electromagnetic field as a Fourier integral, and

taking into account that

pe� = �E����E��r0��e
−i��t�,

pm� = �H����B��r0��e
−i��t�,

we get

Fx� = − i�
�

�
d��

2�
� d3k�

�2��3
kx���E�����E� · E�

�
��k�
+ �H����

��B� · B�
�
��k�

� = − i�
�

�
d��

2�
� d3k�

�2��3
kx���E����

+ �H������E� · E�
�
��k�

, �44�

where we have taken into account that for plane waves

�E� ·E�
�
��k�

= �B� ·B�
�
��k�

. When we change from the K�

reference frame to the K reference frame �E� ·E�
�
��k�

is

transformed as the energy density of a plane electromagnetic

field. From the law of transformation of the energy density of

a plane electromagnetic field30 we get

A. I. VOLOKITIN AND B. N. J. PERSSON PHYSICAL REVIEW B 78, 155437 �2008�

155437-6



�E� · E�
�
��k�

= �E · E�
�k���

�
�2

. �45�

According to the theory of the fluctuating electromagnetic

field31

�E · E�
�k = 4�2�k	���

c
− k� − ���

c
+ k�
�1 + 2n���� .

�46�

Taking into account the invariance of the square of the four-

wave vector �� /c�2−k2= ��� /c�2−k�
2 Eq. �46� can be rewrit-

ten in the form

�E · E�
�k =
4�2�k2

k�
	����

c
− k�� − ����

c
+ k��


��1 + 2n���� . �47�

Substitution Eqs. �45� and �47� in Eq. �44� and integration

over �� gives

Fx =
�c

2�2� d3kkkx�Im �E�ck� + Im �H�ck��

� �n�	�ck + Vkx�� − n�	�ck − Vkx��� , �48�

where we have omitted index of prime and have taken into

account that �= ���+kx�V�	. Introducing the new variable

�=ck, Eq. �48� can be transformed to the form

Fx =
2�

�c2�
0

�

d��2�
0

�/c

dkxkx�Im �E��� + Im �H����

� �n�	�ck + Vkx�� − n�	�ck − Vkx��� . �49�

Equation �49� generalizes the result obtained in Ref. 22 to

the case of large velocities and includes the contribution

from the magnetic moment. For metallic particles the contri-

bution from the magnetic moment exceeds substantially the

contribution from the electric dipole moment. At small ve-

locities Fx=−�V, where

� =
4�

3�c5�
0

�

d��−
�n

��
��5�Im �E��� + Im �H���� .

�50�

For metals with 4���kBT /� and for c�2��kBT�R, where

� is the conductivity, from Eqs. �25� and �26� we get

Im �E��� � R3
3�

4��
, �51�

Im �H��� =
4���R5

30c2
. �52�

Setting the friction coefficient � to m0 /�, where � the relax-

ation time, and using m0=4�R3� /3, from Eqs. �50�–�52� we

get

�e
−1 � 102

�

��T
5

kBT

��
, �53�

�m
−1 � 102

�R

��T
6

�R

c
, �54�

where �e
−1 and �m

−1 are the contributions to the friction from

the electric dipole and magnetic moments, respectively. For

T=300 K, ��104 kg /m3, and ��1018 s−1 from Eqs. �51�
and �54� we get �e�1016 s and �m�1012 s. When the con-

ductivity decreases �e also decreases and reaches minimum

at 2���kBT /�. At T=3000 K this minimum corresponds

to about a day ��e
min�105 s�. In Ref. 22 the same relaxation

time was obtained for Ba+.

VII. CONCLUSION

In this paper within the framework of unified approach we

have calculated the Casimir-Lifshitz interaction, the van der

Waals friction force, and the radiative heat transfer at non-

equilibrium conditions when the interacting bodies are at dif-

ferent temperatures and when they move relative to each

other with the arbitrary velocity V. In comparison with the

existing literature we have studied more general nonequilib-

rium conditions. Our study was focused on the surface-

surface and surface-particle configurations. We have found

the exact solution of problem about the determination of the

fluctuating electromagnetic field in the vacuum gap between

two flat parallel surfaces moving relative to each other.

Knowing the electromagnetic field we have calculated the

Maxwell stress tensor and the Poynting vector which deter-

mine the friction, conservative forces, and the heat transfer

between the solids, respectively. For the heat transfer and the

conservative force our treatment generalizes the results ob-

tained for bodies at rest to the case of bodies which move

relative to each other. The velocity dependence of the con-

sidered phenomena can be strong if the surfaces of the bodies

can support localized surface modes such as coupled

plasmon-polaritons, phonon-polaritons, or adsorbate vibra-

tional modes. In this case, when interaction is determined by

the resonances, connected with these surface modes, Doppler

shift will lead to the displacement of resonances relative to

each other. If resonances are sufficiently sharp, then it will

lead to the strong dependence on the velocity. This effect can

be used for the precision determination of energy of the sur-

face modes. We have shown that relativistic effects produce a

mixing of the s- and p-wave contributions to the forces and

the heat transfer. This relativistic effect is of the order �V /c�2.

If one neglects by terms of order �V /c�2, the different polar-

izations will contribute to the forces and the heat transfer

separately. From the limit when one of the bodies is rarefied,

we have calculated the interaction force and the heat transfer

for a small particle outside a flat surface. For a particle we

have taken into account the contribution to the forces and the

heat transfer from the electric dipole and magnetic moments.

For metallic particles we have found that the contribution to

the friction from the magnetic moment exceeds the contribu-

tion from the electric dipole moment by several orders of

magnitude. We have presented a relativistic theory of the

friction force acting on a particle moving relative to the

black body radiation. We have shown that the thermal radia-

tion of the particle does not produce any acceleration and
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that the friction force acting on the particle is determined by

external electromagnetic field associated with the black body

radiation. For a metallic particle moving relative to the black

body radiation the friction force increases initially when the

conductivity decreases, reaches maximum at 2����T, and

then decreases.

ACKNOWLEDGMENTS

A.I.V. acknowledges financial support from the Russian

Foundation for Basic Research �Grant No. 08-02-00141-a�
and DFG.

*Corresponding author; alevolokitin@yandex.ru
1 S. M. Rytov, Theory of Electrical Fluctuation and Thermal Ra-

diation �Academy of Science of USSR, Moscow, 1953�.
2 M. L. Levin and S. M. Rytov, Theory of Equilibrium Thermal

Fluctuations in Electrodynamics �Science, Moscow, 1967�.
3 S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of

Statistical Radiophyics �Springer, New York, 1989�, Vol. 3.
4 E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 �1955� �Sov. Phys.

JETP 2, 73 �1956��.
5 D. Polder and M. Van Hove, Phys. Rev. B 4, 3303 �1971�.
6 A. I. Volokitin and B. N. J. Persson, J. Phys.: Condens. Matter

11, 345 �1999�; Phys. Low-Dimens. Struct. 7/8, 17 �1998�.
7 M. Antezza, L. P. Pitaevskii, S. Stringari, and V. B. Svetovoy,

Phys. Rev. A 77, 022901 �2008�.
8 M. Antezza, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett.

95, 113202 �2005�.
9 M. Antezza, L. P. Pitaevskii, S. Stringari, and V. B. Svetovoy,

Phys. Rev. Lett. 97, 223203 �2006�.
10 J. B. Pendry, J. Phys.: Condens. Matter 11, 6621 �1999�.
11 A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 63, 205404

�2001�; Phys. Low-Dimens. Struct. 5/6, 151 �2001�.
12 A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 69, 045417

�2004�.
13 A. I. Volokitin and B. N. J. Persson, JETP Lett. 78, 457 �2003�.
14 J. P. Mulet, K. Joulin, R. Carminati, and J. J. Greffet, Appl. Phys.

Lett. 78, 2931 �2001�.
15 J. P. Mulet, K. Joulain, R. Carminati, and J. J. Greffet, Micro-

scale Thermophys. Eng. 6, 209 �2002�.
16 A. Kittel, W. Müller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig,

and M. Holthaus, Phys. Rev. Lett. 95, 224301 �2005�.
17 K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J.

Greffet, Surf. Sci. Rep. 57, 59 �2005�.
18 A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291

�2007�.
19 A. I. Volokitin and B. N. J. Persson, J. Phys.: Condens. Matter

13, 859 �2001�.
20 A. I. Volokitin and B. N. J. Persson, Phys. Rev. Lett. 91, 106101

�2003�.
21 A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 68, 155420

�2003�.
22 V. Mkrtchian, V. A. Parsegian, R. Podgornik, and W. M. Saslow,

Phys. Rev. Lett. 91, 220801 �2003�.
23 P. O. Chapuis, M. Laroche, S. Volz, and J. J. Greffet, Phys. Rev.

B 77, 125402 �2008�.
24 J. B. Pendry, J. Phys.: Condens. Matter 9, 10301 �1997�.
25 L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous

Media �Pergamon, Oxford, 1960�.
26 J. Schwinger, L. DeRaad, and K. Milton, Ann. Phys. �N.Y.� 115,

1 �1978�.
27 G. V. Dedkov and A. A. Kyasov, Phys. Lett. A 339, 212 �2005�.
28 A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 65, 115419

�2002�.
29 G. V. Dedkov and A. A. Kyasov, Tech. Phys. 53, 389 �2008�.
30 L. D. Landau and E. M. Lifshitz, The Classical Theory of Field

�Pergamon, Oxford, 1975�.
31 E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics �Perga-

mon, Oxford, 1980�, Pt. 2.

A. I. VOLOKITIN AND B. N. J. PERSSON PHYSICAL REVIEW B 78, 155437 �2008�

155437-8


