001     276569
005     20210129220914.0
024 7 _ |a 10.1021/acs.biochem.5b00366
|2 doi
024 7 _ |a 0006-2960
|2 ISSN
024 7 _ |a 1520-4995
|2 ISSN
024 7 _ |a WOS:000361086500009
|2 WOS
024 7 _ |a altmetric:4439485
|2 altmetric
024 7 _ |a pmid:26284781
|2 pmid
037 _ _ |a FZJ-2015-06934
082 _ _ |a 570
100 1 _ |a Ma, Peixiang
|0 P:(DE-Juel1)132033
|b 0
245 _ _ |a Conformational Polymorphism in Autophagy-Related Protein GATE-16
260 _ _ |a Columbus, Ohio
|c 2015
|b American Chemical Society
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449672622_32505
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Autophagy is a fundamental homeostatic process in eukaryotic organisms, fulfilling essential roles in development and adaptation to stress. Among other factors, formation of autophagosomes critically depends on proteins of the Atg8 (autophagy-related protein 8) family, which are reversibly conjugated to membrane lipids. We have applied Xray crystallography, nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to study the conformational dynamics of Atg8-type proteins, using GATE-16 (Golgiassociated ATPase enhancer of 16 kDa), also known as GABARAPL2, as a model system. This combination of complementary approaches provides new insight into a structural transition centered on the C-terminus, which is crucial for the biological activity of these proteins.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schillinger, Oliver
|0 P:(DE-Juel1)157850
|b 1
|u fzj
700 1 _ |a Schwarten, Melanie
|0 P:(DE-Juel1)132019
|b 2
|u fzj
700 1 _ |a Lecher, Justin
|0 P:(DE-Juel1)132010
|b 3
|u fzj
700 1 _ |a Hartmann, Rudolf
|0 P:(DE-Juel1)132001
|b 4
|u fzj
700 1 _ |a Stoldt, Matthias
|0 P:(DE-Juel1)132023
|b 5
|u fzj
700 1 _ |a Mohrlüder, Jeannine
|0 P:(DE-Juel1)132012
|b 6
|u fzj
700 1 _ |a Olubiyi, Olujide
|0 P:(DE-Juel1)138971
|b 7
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 8
|u fzj
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 9
|u fzj
700 1 _ |a Weiergräber, Oliver H.
|0 P:(DE-Juel1)131988
|b 10
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.biochem.5b00366
|g Vol. 54, no. 35, p. 5469 - 5479
|0 PERI:(DE-600)1472258-6
|n 35
|p 5469 - 5479
|t Biochemistry
|v 54
|y 2015
|x 1520-4995
856 4 _ |u https://juser.fz-juelich.de/record/276569/files/Conformational%20Polymorphism%20in%20Autophagy-Related%20Protein%20GATE-16_2015.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276569/files/Conformational%20Polymorphism%20in%20Autophagy-Related%20Protein%20GATE-16_2015.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276569/files/Conformational%20Polymorphism%20in%20Autophagy-Related%20Protein%20GATE-16_2015.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276569/files/Conformational%20Polymorphism%20in%20Autophagy-Related%20Protein%20GATE-16_2015.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276569/files/Conformational%20Polymorphism%20in%20Autophagy-Related%20Protein%20GATE-16_2015.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276569/files/Conformational%20Polymorphism%20in%20Autophagy-Related%20Protein%20GATE-16_2015.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:276569
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157850
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132019
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132010
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132001
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132023
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132012
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)132024
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)132029
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131988
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOCHEMISTRY-US : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21