001     276576
005     20210129220916.0
024 7 _ |a 10.5194/bg-12-163-2015
|2 doi
024 7 _ |a 1726-4170
|2 ISSN
024 7 _ |a 1726-4189
|2 ISSN
024 7 _ |a 2128/9583
|2 Handle
024 7 _ |a WOS:000347960800010
|2 WOS
024 7 _ |a altmetric:3089166
|2 altmetric
037 _ _ |a FZJ-2015-06941
082 _ _ |a 570
100 1 _ |a von Bueren, S. K.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Deploying four optical UAV-based sensors over grassland: challenges and limitations
260 _ _ |a Katlenburg-Lindau [u.a.]
|c 2015
|b Copernicus
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1450083543_20492
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Unmanned aerial vehicles (UAVs) equipped with lightweight spectral sensors facilitate non-destructive, near-real-time vegetation analysis. In order to guarantee robust scientific analysis, data acquisition protocols and processing methodologies need to be developed and new sensors must be compared with state-of-the-art instruments. Four different types of optical UAV-based sensors (RGB camera, converted near-infrared camera, six-band multispectral camera and high spectral resolution spectrometer) were deployed and compared in order to evaluate their applicability for vegetation monitoring with a focus on precision agricultural applications. Data were collected in New Zealand over ryegrass pastures of various conditions and compared to ground spectral measurements. The UAV STS spectrometer and the multispectral camera MCA6 (Multiple Camera Array) were found to deliver spectral data that can match the spectral measurements of an ASD at ground level when compared over all waypoints (UAV STS: R2=0.98; MCA6: R2=0.92). Variability was highest in the near-infrared bands for both sensors while the band multispectral camera also overestimated the green peak reflectance. Reflectance factors derived from the RGB (R2=0.63) and converted near-infrared (R2=0.65) cameras resulted in lower accordance with reference measurements. The UAV spectrometer system is capable of providing narrow-band information for crop and pasture management. The six-band multispectral camera has the potential to be deployed to target specific broad wavebands if shortcomings in radiometric limitations can be addressed. Large-scale imaging of pasture variability can be achieved by either using a true colour or a modified near-infrared camera. Data quality from UAV-based sensors can only be assured, if field protocols are followed and environmental conditions allow for stable platform behaviour and illumination.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Burkart, A.
|0 P:(DE-Juel1)145906
|b 1
|e Corresponding author
700 1 _ |a Hueni, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rascher, U.
|0 P:(DE-Juel1)129388
|b 3
700 1 _ |a Tuohy, M. P.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Yule, I. J.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.5194/bg-12-163-2015
|g Vol. 12, no. 1, p. 163 - 175
|0 PERI:(DE-600)2158181-2
|n 1
|p 163 - 175
|t Biogeosciences
|v 12
|y 2015
|x 1726-4189
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/276576/files/bg-12-163-2015.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/276576/files/bg-12-163-2015.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/276576/files/bg-12-163-2015.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/276576/files/bg-12-163-2015.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/276576/files/bg-12-163-2015.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/276576/files/bg-12-163-2015.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:276576
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145906
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOGEOSCIENCES : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21