000276579 001__ 276579
000276579 005__ 20210129220917.0
000276579 0247_ $$2doi$$a10.1016/j.rse.2015.03.027
000276579 0247_ $$2ISSN$$a0034-4257
000276579 0247_ $$2ISSN$$a1879-0704
000276579 0247_ $$2WOS$$aWOS:000356554600022
000276579 0247_ $$2altmetric$$aaltmetric:21827767
000276579 037__ $$aFZJ-2015-06944
000276579 041__ $$aEnglish
000276579 082__ $$a050
000276579 1001_ $$00000-0002-7192-2032$$aCogliati, S.$$b0$$eCorresponding author
000276579 245__ $$aContinuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems
000276579 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000276579 3367_ $$2DRIVER$$aarticle
000276579 3367_ $$2DataCite$$aOutput Types/Journal article
000276579 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1474352223_341
000276579 3367_ $$2BibTeX$$aARTICLE
000276579 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276579 3367_ $$00$$2EndNote$$aJournal Article
000276579 520__ $$aIn this paper we present novel automated field spectroscopy systems for collecting unattended, continuous and long-term measurements of plant canopies and, more in general, of Earth's ecosystems. These systems simultaneously collect high and ultra-high resolution spectra in the visible to near-infrared (VNIR) domain employing two spectrometers: i) the first covers the spectral range 400–1000 nm with a 1.0 nm spectral resolution; ii) the second provides a sub-nanometer spectral resolution within the 700–800 nm spectral range. The data collected by the first spectrometer allow retrieval of VNIR reflectance, while the higher spectral resolution data from the second device permit estimation of vegetation Sun-Induced Fluorescence (SIF) in the O2–A band. The instruments are constructed by assembling commercial and on-the-shelf optoelectronic devices to facilitate reproduction of the instrument for promoting measurements over different ecosystems. The instrument's optical design, data collection and processing, laboratory and in-field calibration methods are reported and discussed. The high spectral resolution and the rigorous calibration methods enable accurate estimation of SIF in physical units by exploiting almost the same retrieval concept as that of the European Space Agency FLuorescence EXplorer mission. The instruments have been operated in several field campaigns with the aim to show: i) the possibility of continuous and seasonal monitoring of plant growth and activity of an agricultural crop; and ii) the diverse and specific daily course patterns of different types of canopy. The datasets of canopy reflectance, vegetation indices and SIF collected are shown and discussed.
000276579 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000276579 588__ $$aDataset connected to CrossRef
000276579 7001_ $$0P:(DE-HGF)0$$aRossini, M.$$b1
000276579 7001_ $$0P:(DE-HGF)0$$aJulitta, T.$$b2
000276579 7001_ $$0P:(DE-HGF)0$$aMeroni, M.$$b3
000276579 7001_ $$0P:(DE-Juel1)7338$$aSchickling, A.$$b4
000276579 7001_ $$0P:(DE-Juel1)145906$$aBurkart, A.$$b5
000276579 7001_ $$0P:(DE-Juel1)138884$$aPinto, F.$$b6
000276579 7001_ $$0P:(DE-Juel1)129388$$aRascher, U.$$b7
000276579 7001_ $$0P:(DE-HGF)0$$aColombo, R.$$b8
000276579 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2015.03.027$$gVol. 164, p. 270 - 281$$p270 - 281$$tRemote sensing of environment$$v164$$x0034-4257$$y2015
000276579 8564_ $$uhttps://juser.fz-juelich.de/record/276579/files/1-s2.0-S0034425715001248-main.pdf$$yRestricted
000276579 8564_ $$uhttps://juser.fz-juelich.de/record/276579/files/1-s2.0-S0034425715001248-main.gif?subformat=icon$$xicon$$yRestricted
000276579 8564_ $$uhttps://juser.fz-juelich.de/record/276579/files/1-s2.0-S0034425715001248-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000276579 8564_ $$uhttps://juser.fz-juelich.de/record/276579/files/1-s2.0-S0034425715001248-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000276579 8564_ $$uhttps://juser.fz-juelich.de/record/276579/files/1-s2.0-S0034425715001248-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000276579 8564_ $$uhttps://juser.fz-juelich.de/record/276579/files/1-s2.0-S0034425715001248-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000276579 909CO $$ooai:juser.fz-juelich.de:276579$$pVDB
000276579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7338$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000276579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145906$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000276579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138884$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000276579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000276579 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000276579 9141_ $$y2015
000276579 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000276579 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000276579 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2014
000276579 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000276579 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000276579 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000276579 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000276579 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000276579 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000276579 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000276579 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bREMOTE SENS ENVIRON : 2014
000276579 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000276579 980__ $$ajournal
000276579 980__ $$aVDB
000276579 980__ $$aI:(DE-Juel1)IBG-2-20101118
000276579 980__ $$aUNRESTRICTED