000276592 001__ 276592
000276592 005__ 20240712100947.0
000276592 0247_ $$2doi$$a10.5194/amtd-8-12475-2015
000276592 0247_ $$2Handle$$a2128/9494
000276592 037__ $$aFZJ-2015-06946
000276592 082__ $$a550
000276592 1001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b0$$eCorresponding author$$ufzj
000276592 245__ $$aInvestigation of potential interferences in the detection of atmospheric RO$_{x}$ radicals by laser-induced fluorescence under dark conditions
000276592 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2015
000276592 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1448958226_13514
000276592 3367_ $$2DataCite$$aOutput Types/Journal article
000276592 3367_ $$00$$2EndNote$$aJournal Article
000276592 3367_ $$2BibTeX$$aARTICLE
000276592 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276592 3367_ $$2DRIVER$$aarticle
000276592 520__ $$aDirect detection of highly reactive, atmospheric hydroxyl radicals (OH) is widely accomplished by laser-induced fluorescence (LIF) instruments. The technique is also suitable for the indirect measurement of HO2 and RO2 peroxy radicals by chemical conversion to OH. It requires sampling of ambient air into a low pressure cell, where OH fluorescence is detected after excitation by 308 nm laser radiation. Although the residence time of air inside the fluorescence cell is typically only on the order of milliseconds, there is potential that additional OH is internally produced, which would artificially increase the measured OH concentration. Here, we present experimental studies investigating potential interferences in the detection of OH and peroxy radicals for the LIF instruments of Forschungszentrum Jülich for nighttime conditions. For laboratory experiments, the inlet of the instrument was overflown by excess synthetic air containing one or more reactants. In order to distinguish between OH produced by reactions upstream of the inlet and artificial signals produced inside the instrument, a chemical titration for OH was applied. Additional experiments were performed in the simulation chamber SAPHIR where simultaneous measurements by an open-path differential optical absorption spectrometer (DOAS) served as reference for OH to quantify potential artifacts in the LIF instrument. Experiments included the investigation of potential interferences related to the nitrate radical (NO3, N2O5), related to the ozonolysis of alkenes (ethene, propene, 1-butene, 2,3-dimethyl-2-butene, α-pinene, limonene, isoprene), and the laser photolysis of acetone. Experiments studying the laser photolysis of acetone yield OH signals in the fluorescence cell, which are equivalent to 0.05 × 106 cm−3 OH for a mixing ratio of 5 ppbv acetone. Under most atmospheric conditions, this interference is negligible. No significant interferences were found for atmospheric concentrations of reactants during ozonolysis experiments. Only for α-pinene, limonene, and isoprene at reactant concentrations which are orders of magnitude higher than in the atmosphere artificial OH could be detected. The value of the interference depends on the turnover rate of the ozonolysis reaction. For example, an apparent OH concentration of approximately 1 × 106 cm−3 is observed, if 5.8 ppbv limonene reacts with 600 ppbv ozone. Experiments with the nitrate radical NO3 reveal a small interference signal in the OH, HO2 and RO2 detection. Dependencies on experimental parameters point to artificial OH formation by surface reactions at the chamber walls or in molecular clusters in the gas expansion. The signal scales with the presence of NO3 giving equivalent radical concentrations of 1.1 × 105 cm−3 OH, 1 × 107 cm−3 HO2, and 1.7 × 107 cm−3 RO2 per 10 pptv NO3.
000276592 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000276592 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000276592 588__ $$aDataset connected to CrossRef
000276592 7001_ $$0P:(DE-Juel1)157909$$aTan, Zhaofeng$$b1
000276592 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, A.$$b2$$ufzj
000276592 7001_ $$0P:(DE-Juel1)7591$$aBroch, S.$$b3$$ufzj
000276592 7001_ $$0P:(DE-Juel1)16317$$aDorn, H.-P.$$b4$$ufzj
000276592 7001_ $$0P:(DE-Juel1)16342$$aHolland, F.$$b5$$ufzj
000276592 7001_ $$0P:(DE-Juel1)166190$$aKünstler, C.$$b6$$ufzj
000276592 7001_ $$0P:(DE-Juel1)8954$$aGomm, Sebastian$$b7$$ufzj
000276592 7001_ $$0P:(DE-Juel1)16347$$aRohrer, F.$$b8$$ufzj
000276592 7001_ $$0P:(DE-Juel1)129150$$aSchrade, S.$$b9$$ufzj
000276592 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b10$$ufzj
000276592 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b11$$ufzj
000276592 773__ $$0PERI:(DE-600)2507817-3$$a10.5194/amtd-8-12475-2015$$gVol. 8, no. 11, p. 12475 - 12523$$n11$$p12475 - 12523$$tAtmospheric measurement techniques discussions$$v8$$x1867-8610$$y2015
000276592 8564_ $$uhttps://juser.fz-juelich.de/record/276592/files/amtd-8-12475-2015.pdf$$yOpenAccess
000276592 8564_ $$uhttps://juser.fz-juelich.de/record/276592/files/amtd-8-12475-2015.gif?subformat=icon$$xicon$$yOpenAccess
000276592 8564_ $$uhttps://juser.fz-juelich.de/record/276592/files/amtd-8-12475-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000276592 8564_ $$uhttps://juser.fz-juelich.de/record/276592/files/amtd-8-12475-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000276592 8564_ $$uhttps://juser.fz-juelich.de/record/276592/files/amtd-8-12475-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000276592 8564_ $$uhttps://juser.fz-juelich.de/record/276592/files/amtd-8-12475-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000276592 8767_ $$92016-01-18$$d2016-01-19$$eAPC$$jZahlung erfolgt$$pAMT-2015-347
000276592 909CO $$ooai:juser.fz-juelich.de:276592$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000276592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000276592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000276592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7591$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000276592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16317$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000276592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16342$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000276592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166190$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000276592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8954$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000276592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000276592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129150$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000276592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000276592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000276592 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000276592 9141_ $$y2015
000276592 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000276592 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000276592 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000276592 920__ $$lyes
000276592 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000276592 9801_ $$aUNRESTRICTED
000276592 9801_ $$aFullTexts
000276592 980__ $$ajournal
000276592 980__ $$aVDB
000276592 980__ $$aUNRESTRICTED
000276592 980__ $$aI:(DE-Juel1)IEK-8-20101013
000276592 980__ $$aAPC
000276592 981__ $$aI:(DE-Juel1)ICE-3-20101013