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Abstract

In Canada routine ozone soundings have been carried at Resolute Bay since 1966,

making this record the longest in the world. Similar measurements started in the 1970s

at three other sites, and the network was expanded in stages to 10 sites by 2003.

This important record for understanding long-term changes in tropospheric and strato-5

spheric ozone has been re-evaluated as part of the SPARC/IO3C/IGACO-O3/NDACC

(SI
2
N) initiative. The Brewer–Mast sonde, used in the Canadian network until 1980,

is different in construction from the ECC sonde, and the ECC sonde itself has also

undergone a variety of minor design changes over the period 1980–2013. Corrections

have been made for the estimated effects of these changes, to produce a more homo-10

geneous dataset.

The effect of the corrections is generally modest, and so should not invalidate past

analyses that have used Canadian network data. However, the overall result is en-

tirely positive: the comparison with co-located total ozone spectrometers is improved, in

terms of both bias and SD, and trends in the bias have been reduced or eliminated. An15

uncertainty analysis (including the additional uncertainty from the corrections, where

appropriate) has also been conducted, and the altitude-dependent estimated uncer-

tainty is included with each revised profile.

The resulting time series show negative trends in the lower stratosphere of up to

5 %decade
−1

for the period 1966–2013. Most of this decline occurred before 1997,20

and linear trends for the more recent period are generally not significant. The time

series also show large variations from year to year. Some of these anomalies can be

related to cold winters (in the Arctic stratosphere), or changes in the Brewer–Dobson

circulation, which may thereby be influencing trends.

In the troposphere trends for the 48 year period are small, and for the most part not25

significant. This suggests that ozone levels in the free troposphere over Canada have

not changed significantly in nearly 50 years.
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1 Introduction

Ozone plays a major role in the chemical and thermal balance of the atmosphere,

controlling the oxidizing capacity of the lower atmosphere via its photochemical link

to the OH radical, and also acting as an important short-lived climate forcer, while

ozone changes in the stratosphere, as well as strongly affecting surface UV radiation,5

may also affect future climate (IPCC, 2013, and references therein). In addition to the

information they provide on the vertical distribution of ozone in the lower stratosphere,

ozone soundings are the major source, worldwide, of information on ozone amounts in

the free troposphere.

Vertical distribution information is particularly important for ozone transport stud-10

ies, as transport in the atmosphere occurs in thin, quasi-horizontal layers. The

global ozonesonde record is therefore increasingly important for understanding long-

term changes in both tropospheric and stratospheric ozone, as each may be af-

fected by changes in long-range quasi-horizontal transport, as well as by vertical ex-

change/mixing between layers. For example, ozonesonde measurements show impact15

on near-surface ozone concentrations of intrusions of ozone from the lower strato-

sphere (e.g. He et al., 2011; Hocking et al., 2007), and the inter-continental transport

of tropospheric ozone and its precursor species (Oltmans et al., 2006, 2010). Canadian

ozonesondes have also provided essential information on the nature of Arctic strato-

spheric ozone loss (Manney et al., 2011, and references therein), of Arctic surface20

depletion events (Tarasick and Bottenheim, 2002; Bottenheim et al., 2002), and of the

global circulation of ozone (e.g. Lin et al., 2015; Bönisch et al., 2011; Pan et al., 2009),

as well as of tropospheric sources and budgets (e.g. Emmons et al., 2014; Parrington

et al., 2012; Walker et al., 2010, 2012; Macdonald et al., 2011; Thompson et al., 2007;

Tarasick et al., 2007).25

The time series of ozone soundings from Canadian stations comprises some of the

longest records of vertical ozone profile measurement that exist, as well as the only

time series of measurements in the free troposphere over Canada. Following some
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initial ozone soundings conducted in cooperation with the US Air Force Cambridge

Research Laboratories (AFGL) from 1963–1965 at Goose Bay and Churchill, em-

ploying chemiluminescent (Regener, 1960) sondes (Hering, 1964; Hering and Borden,

1964, 1965, 1967), regular ozone soundings using electrochemical Brewer–Mast son-

des (Brewer and Milford, 1960) began at Resolute in January 1966. Table 1 describes5

the locations of Canadian ozonesonde stations and their data records.

Preparation procedures for the Brewer–Mast sondes are described in Tarasick et al.

(2002), but essentially followed Mueller (1976). In 1980 the Canadian network switched

to ECC sondes. ECC sonde preparation and launch procedures are as described in

Tarasick et al. (2005). Although these procedures were not changed at any time in the10

Canadian record, the change of sonde type, as well as minor changes in the design

of the ECC sonde over the past three decades, may have introduced biases in the

measurement time series that could affect trends (Table 2). The associated radiosonde

has also changed, which could influence the ozone profile by introducing altitude shifts,

primarily above 25 hPa (25 km), due to temperature or pressure biases.15

As part of the SPARC/IO3C/IGACO-O3/NDACC (SI
2
N) initiative, the Ozonesonde

Data Quality Assessment (O3S-DQA) was initiated in order to resolve inhomogeneities

in the global long-term ozone sounding record. The effects of many of the changes

listed in Table 2 have been characterized by recent laboratory and field work and can

now be corrected. The uncertainty of ozonesonde profile measurements can now also20

be described with a degree of confidence that was not available in the past. These

developments are described in a recent report (Smit et al., 2012), and the re-evaluation

of the Canadian record described here follows those recommendations.
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2 Corrections to the sounding data

The operating principle of ozonesondes is the well-known reaction of potassium iodide

with ozone:

2KI+O3 +H2O −→ 2KOH+ I2 +O2, (R1)

followed by5

I2 +2e−
−→ 2I−. (R2)

Thus for each molecule of ozone two electrons are produced and an equivalent amount

of current flows through the external circuit. The measurement is therefore, in principle,

absolute; however there may be losses of ozone and/or of iodine, and there may be

side reactions that also convert iodide to iodine. Ozone partial pressure is calculated10

using (e.g. Komhyr, 1986)

PO3
= 0.004307(i − iB)T t, (1)

where i is the measured current in microamperes, iB is the background current, T is

the temperature of the air in the pump in kelvins (often approximated by the sonde box

temperature) and t is the measured time in seconds to pump 100 mL of air. Errors or15

bias changes in the temperature or background current measurement or the pump rate

(or its change with ambient pressure during flight) can therefore affect the ozonesonde

measurement.

2.1 Total ozone normalization

In practice ECC ozonesondes have a precision of 3–5 % and a total uncertainty of20

about 10 % (Smit et al., 2007; Kerr et al., 1994; Deshler et al., 2008a; Liu et al.,

2009). The precision of the older Brewer–Mast sonde is somewhat poorer, at about

5–10 % (Kerr et al., 1994; Smit et al., 1996). The Brewer–Mast soundings required
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normalizing, or “correcting”, by linearly scaling the entire ozone profile to a total ozone

measurement. This was because they showed a typical response equivalent to about

80 % of the actual ozone amount when prepared according to the manufacturer’s in-

structions (the Canadian practice), and so needed to be scaled, by what is tradition-

ally referred to as the “correction factor”, to give a more accurate result. Although the5

ECC sonde response is much closer to 100 %, normalizing to a coincident Brewer or

Dobson spectrophotometer measurement has continued to be the Canadian practice

because it demonstrably reduces uncertainties in ozonesonde data (e.g., Kerr et al.,

1994; Smit et al., 1996; Beekmann et al., 1994, 1995). Uncertainties are 7–10 % for

non-normalized data and 5–7 % for normalized data (Fioletov et al., 2007). This im-10

provement is because of the greater accuracy of total ozone measurements: for well-

calibrated total ozone instruments the standard uncertainty of direct sun measurements

is less than 3 % (Basher, 1982).

The Canadian total ozone record has been extensively revised, but the correspond-

ing revisions to normalization factors in the sonde record had not, until now, been15

made. We found occasional cases of surprisingly large differences (∼ 35 %). In some

cases, particularly in the older Dobson record, a total ozone value for the previous day

appears to have been used. In addition, historical practice in Canada for estimating

the residual ozone amount above the profile top has been to simply assume constant

ozone mixing ratio above the balloon burst altitude. Much better knowledge now exists20

for the distribution of ozone at higher altitudes, and so the use of a climatological es-

timate is preferred. We have used the climatology of McPeters and Labow (2012) to

renormalize the Canadian data.

There are arguments against normalization of ECC sonde profiles: the process in-

troduces a degree of uncertainty because the amount of ozone above the balloon burst25

height can only be estimated. It is also not clear that a scaling factor that is constant

with altitude is appropriate in all cases. This is of particular concern for the tropospheric

part of the profile; whether normalization, which is necessarily weighted to the much

larger stratospheric part of the profile, improves tropospheric measurements is an open
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question. Normalization also renders the sonde record no longer independent of the to-

tal ozone record, which is an important issue for trend studies (although to some extent

alleviated if there is no trend in scaling factors), and evidently can introduce a serious

bias if the total ozone instrument calibration is in error. Fortunately, since the scaling is

linear in measured ozone, it can be applied, and as easily removed, in post-processing5

or by the data user.

The normalization factor is unquestionably of value as a data quality control indicator,

and we will use it as such in the analysis to follow. We present here normalized data, for

consistency between the Brewer–Mast and ECC records, and with past trend analyses

(e.g. Tarasick et al., 2005).10

2.2 Correction for Brewer–Mast tropospheric response

Laboratory work (Tarasick et al., 2002) suggests that the response of Brewer–Mast

sondes in the Canadian program was biased low in the troposphere. We have ap-

plied a correction based on simple quadratic fit to the data shown in Fig. 7 of Tarasick

et al. (2002). The correction is consistent with that implied by the WMO-II intercompar-15

ison of 1978 (Attmannspacher and Dütsch, 1981; see also Fig. 10 of Liu et al., 2013)

and also similar to, but somewhat more modest than that suggested by the WMO-

I and BOIC sonde intercomparison campaigns (Attmannspacher and Dütsch, 1981;

Hilsenrath et al., 1986) and the analysis by Lehmann (2005) of Brewer–Mast data from

the Australian program. The Australian program used similar procedures to those in20

Canada.

2.3 Pump corrections

The efficiency of the ozonesonde pump decreases at low pressures, and a correction

for this is part of normal data reduction. Pump corrections from Komhyr et al. (1968)

were used for Canadian Brewer–Mast sonde data (Mateer, 1977). We have now ap-25

plied the more commonly used Komhyr and Harris (1965) pump corrections, recom-
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mended by WMO (Claude et al., 1987), which are larger than the Komhyr et al. (1968)

corrections. Significantly larger pump corrections have been recommended by Stein-

brecht et al. (1998), but these may not apply to older Brewer–Mast sondes (Lehmann

and Easson, 2003).

For ECC model 3A sondes, flown in Canada between 1979 and 1982, no change to5

the pump correction has been made, but the pump correction table has been added

to the file. The correction is that supplied by the manufacturer, but also similar to that

found by Torres (1981).

The ECC model 4A sonde differs significantly from the 3A; the major difference is

a redesigned pump. In the original data reduction the correction curve supplied in10

1983 by the manufacturer was used for all 4A flights. We have now applied the re-

vised Komhyr (1986) correction curve. This correction curve was already in use for 5A

and all subsequent ECC sonde models. The pump correction table has been added to

the WOUDC file for all flights.

2.4 Solution volume correction15

Standard practice in Canada has been to charge ECC sensors with 2.5 mL of sensing

solution, rather than the 3.0 mL which is now recommended. Laboratory and field in-

vestigations have shown that with 2.5 mL of sensing solution only ∼ 96 % of the ozone

is captured by the sensing solution at ground pressure, but at lower pressures the 4 %

deficit vanishes, apparently because of faster gas-diffusion rates in solution (Davies20

et al., 2003). We have made a correction for this effect.

2.5 Use of standard 1 % buffered KI solution in En-Sci sondes

Two types of ECC ozonesondes have been in use since about 2000, the 2Z model

manufactured by EnSci Corp. and the 6A model manufactured by Science Pump, with

minor differences in construction and in recommended concentrations of the potas-25

sium iodide sensing solution and of its phosphate buffer (Smit et al., 2007). Since the
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Canadian network has used standard 1 % buffered KI solution at all times, where En-

Sci sondes have been used a positive bias of about 4 % below 50 hPa and somewhat

larger above is expected (Boyd et al., 1998; Smit et al., 2007; Deshler et al., 2008b).

We have made a correction for this bias.

2.6 Pump temperature measurement5

The measurement of pump temperature is required to accurately measure the amount

of air passing through the pump into the ECC sensor cell. In the past this has been

approximated by a measurement using a rod thermistor at the base of the electronics

unit (3A and 4A sondes), and later a thermistor suspended in the sonde box. Field and

laboratory experiments suggest that this produced a consistent relationship between10

the “box” temperature and the pump body temperature (Komhyr and Harris, 1971).

Measurement of the actual pump temperature only became standard in Canada in

about 2008. We have made corrections for temperatures measured by either “rod” or

“box” thermistors (Smit et al., 2012).

2.7 Background current15

The background current of the ECC sonde is not well understood, and may have sev-

eral sources. It represents a non-equilibrium condition in the cell, possibly from residual

tri-iodide in new sensing solution (Thornton and Niazy, 1982, 1983), or from previous

exposure to ozone (Johnson et al., 2002). Canadian practice has been to treat it as

proportional to pressure, but there is no reason now to think that this is correct, and20

treating it as approximately constant over the duration of a flight may be a better ap-

proximation and is in fact recommended (Smit and ASOPOS panel, 2011). Unfortu-

nately to properly recalculate ozone assuming a constant background current requires

knowledge of the pump temperature profile, and this is recorded in the WOUDC file

only after 1999. We have therefore not attempted to correct the background current,25
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but have instead treated it as an error source (see Sect. 4), a not entirely satisfactory

choice, since although randomly variable in magnitude, it is always a positive bias.

2.8 Radiosonde changes

Errors in radiosonde pressure or temperature will imply corresponding errors in calcu-

lated geopotential heights, causing measured ozone concentrations to be assigned to5

incorrect altitudes and pressures. This is potentially an important issue for the deriva-

tion of trends, as radiosonde changes may therefore introduce vertical shifts in the

ozone profile, and apparent changes in ozone concentration at a given height.

A number of different radiosonde designs have been used in the Canadian observing

network over the last five decades. Temperature differences between the VIZ sonde,10

used widely in the 1980’s and early 1990’s, and the Vaisala RS-80 sonde, adopted

subsequently Environment Canada, are well documented. The VIZ sonde showed

a warm bias in the daytime by as much as 2C (Richter and Philips, 1981; Luers and

Eskridge, 1995; Wang and Young, 2005). From simultaneous measurements made

during a WMO intercomparison in 1985, Schmidlin (1988) estimates that this bias con-15

tributed 17 m at 50 hPa and 71 m at 10 hPa to the difference in geopotential height

estimates from the two sondes. This corresponds to a shift of ∼ 1 % at 10 hPa (31 km),

but less than 0.1 % at 50 hPa (21 km). Nevertheless, statistical comparisons show that

the switch from VIZ to Vaisala RS-80 at US stations introduced a shift of as much as

120 m at 50 hPa in the daytime (Elliot et al., 2002).20

Pressure errors appear to have a much larger effect (e.g. Morris et al., 2012; Stauffer

et al., 2014): comparisons with radar measurements of height showed the VIZ high

relative to the radar (and the Vaisala) in daytime by ∼ 150 m at 20 hPa; up to 500 m

at 10 hPa (Schmidlin, 1988; Nash and Schmidlin, 1987), while at night both VIZ and

Vaisala RS80 calculated geopotentials were low by ∼ 100 m at 20 hPa, and ∼ 150 m at25

10 hPa. The daytime differences correspond to ozone differences of ∼ 2 and ∼ 7 % at

20 and 10 hPa respectively. The effect of pressure errors is most significant at higher

altitudes: a 1 hPa offset will introduce a geopotential height error of 63 m at 100 hPa,
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120 m at 50 hPa, and over 300 m at 20 hPa; these correspond to ozone differences of

0.25, 0.5 and ∼ 4 % respectively.

Pressure errors also seem more variable, as well: local noon flights during the same

intercomparison show much smaller height differences between the VIZ and Vaisala.

The Vaisala RS-92 has replaced the RS-80, and has been in use in Canada since5

2006. Comparison flights with GPS tracking show that it gives more accurate heights

than the RS80; differences from the GPS are small (Steinbrecht et al., 2008; Nash

et al., 2006). RS80 sondes, however, were found to be low by ∼ 20 m in the tropo-

sphere, and high by 100 m at 10 hPa (Steinbrecht et al., 2008; also da Silveira et al.,

2006).10

Unfortunately intercomparison experiments do not tell the whole story, as not all

manufacturing changes are advertised by a change in model number. For example,

Steinbrecht et al. (2008) note systematic differences between batches of RS-92 sondes

produced before July 2004. Overall, the expected systematic differences in the ozone

profile resulting from radiosonde errors are probably small below 50 hPa. We do not15

attempt to correct for radiosonde errors, but do include possible pressure offsets as an

error source in the uncertainty estimation (Sect. 4). Estimated radiosonde errors are

largest for the older VIZ sonde, with the manufacturer quoting a 1σ uncertainty in the

pressure measurement of 1 hPa.

3 Effects of the corrections20

An analysis of the effects of these corrections is shown in Figs. 1–4 for the station at

Edmonton (Stony Plain). The average change to the ozone profile has been calculated

for the corrections described above, both individually and collectively. Figure 1 shows

the changes for the 1970s when only Brewer–Mast sondes were flown at Edmonton.

The largest change is in the lowermost troposphere, where the response correction25

raises ozone values by about 15 %, although the changes to the normalization make

a significant difference as well. In Fig. 2, the changes to the ECC record in the 1980s
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are comparatively minor, although again the largest change is in the lowermost tropo-

sphere, where the solution volume correction raises ozone values by as much as 4 %.

The new normalization also increases ozone values through the entire profile by 1 %.

In the 1990s (Fig. 3) the shifts are larger: up to 2–3 % throughout the stratosphere.

Most of this appears to be due to the change of temperature measurement, from the5

rod thermistor at the base of the electronics unit, to the “box” temperature, and in a few

cases in 1999, pump temperature measurements. In the 2000s (Fig. 4) the correction

for the change to En-Sci sondes seems to almost cancel that for the change of temper-

ature measurement, so that the overall correction is close to zero, except at the top of

the profile, and in the lower troposphere.10

The overall effect of the corrections is generally modest, and so should not invalidate

past analyses that have used Canadian network data. They can be summarized as:

– Tropospheric changes: increases of up to 5 % after 1979; up to 20 % before 1980

(Brewer–Mast sondes), declining with altitude.

– Stratospheric changes: decreases of up to 4 % before 1980, less above and below15

25 km. Increases of ∼ 1 % in the 1980s, ∼ 2–3 % in the 1990s, and little change in

the 2000s.

An examination of the revised record shows that the removal of these artifacts from

it has indeed reduced uncertainty, as measured by the changes in the comparison to

the total ozone record. Table 3 describes these differences. The normalization factors20

are closer to 1, and their variance is reduced, for both Brewer–Mast and ECC sondes.

A trend in the normalization factors for the Brewer–Mast sondes is reduced, and that

for ECC sondes is effectively removed (no longer statistically significant).

4 Uncertainty analysis

An important goal of the Ozonesonde Data Quality Assessment (O3S-DQA) is to pro-25

duce an uncertainty analysis for ozonesonde data. There have been only a few pub-
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lished efforts to quantify the uncertainty in ozonesonde profile measurements, either

from an analysis of error sources (Komhyr et al., 1995) or empirically, from field or

laboratory intercomparisons (Smit et al., 2007; Kerr et al., 1994; Deshler et al., 2008a;

Barnes et al., 1985; Smit and ASOPOS panel, 2011) or via statistical data analysis (Liu

et al., 2009). Here we attempt a “bottom-up” approach similar to that of Komhyr et al.5

(1995).

Table 4 lists the error sources considered in this analysis. The first five lines refer to

errors that are assumed constant throughout the profile:

1. Stoichiometry

Although the stoichiometry of the neutral buffered-KI method for measuring ozone10

was the subject of some controversy in the 1970s (e.g. Boyd et al., 1970; Pitts

et al., 1976) most workers have found a stoichiometry of 1.0 within experimental

error (Hodgeson et al., 1971; Kopczynski and Bufalini, 1971; Dietz et al., 1973)

especially when potassium bromide is added (Lanting, 1979; Bergshoeff et al.,

1980), as is the case in ozonesondes, and provided that slow side reactions with15

the phosphate buffer are excluded (Saltzman and Gilbert, 1959; Flamm, 1977;

Johnson et al., 2002). We have allowed a modest (1 %) uncertainty for the reaction

stoichiometry in both types of ozonesonde.

2. Temperature measurement

The Brewer–Mast sonde did not have a measurement of the instrument tempera-20

ture, and so the processing assumes a constant temperature of 300 K. Measure-

ments of the actual temperature made by Dütsch (1966) and Steinbrecht et al.

(1998) suggest that it varies over a range of 10–20 K (3–6 %) over a flight, with

a SD of 1–3 %. We have represented this as a 3 % uncertainty. For the ECC

sondes, the box temperature measurement in the 3A and 4A models was less25

accurate than the pump measurement used with later models; we have assumed

a standard error of 0.5 K for the latter and 1.0 K for the former.
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3. Pump calibration

An examination of pre-flight pump flow calibration data from several sites shows

that SD of 0.1–0.3 % in this measurement (performed the day before launch) are

typical. However, differences between this measurement and the corresponding

flow rate determination made at the manufacturer’s facility are larger, with SD of5

about 1 %. Torres (1981) found a 1σ variation in the speed of individual model 3A

pumps of 0.5 %. We have assumed a calibration uncertainty of 0.5 % for all types

of sonde.

4. Relative humidity error

For ECC sondes an additional error source is present, as the during the calibration10

the pump draws relatively dry air from the room and expels it into the graduated

cylinder at close to 100 % relative humidity. Assuming a typical indoor humidity

range of 40–70 % (1σ) gives an uncertainty of ±0.5 %.

5. Correction for use of standard 1 % buffered KI solution in En-Sci sondes

A bias correction of about 4 % below 50 hPa and somewhat larger above has15

been made to En-Sci sondes flown with 1 % KI solution (Deshler et al., 2008b).

We have allowed an additional uncertainty of ±0.5 % where this correction was

made.

The latter seven lines refer to errors that vary throughout the profile, either with pressure

or ozone gradient. Errors are calculated for each point in the profile:20

6. Pump correction error

Pump corrections, and their associated uncertainties, have been measured by

a small number of authors. For Brewer–Mast sondes we have used the estimates

of Komhyr and Harris (1965), and for ECC 3A sondes those of Torres (1981). For

ECC 4A and later models (which have similar pumps), Johnson et al. (2002) pro-25

vide a table summarizing the results of very large number of pump tests, primarily
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at the University of Wyoming and at the NOAA/CMDL laboratories. Both of these

give much larger uncertainties than those quoted by Komhyr (1986), for a small

number of tests. We have averaged these larger values. Torres (1981) also notes

that his uncertainty estimates are based on a modest number of sondes from the

same manufacturing batch, and so may also be biased low. For each sonde type5

we have interpolated the measured uncertainties to other pressures to estimate

this error for all points in each profile.

7. Solution volume correction

As the ozone loss in sensors charged with only 2.5 mL of KI solution appears

quite variable, a fairly large error of 4 % at 1000 hPa, declining with pressure, was10

assumed.

8. Background current

As noted above, Canadian practice has been to treat background current as pro-

portional to pressure, but it is now recommended (Smit and ASOPOS panel,

2011) to treat it as constant. Here we have treated the difference between the15

two values as an uncertainty, although it should be noted that although randomly

variable in magnitude, it is always a positive bias. The average magnitude of the

difference is shown in Figs. 5–8; it is largest in the 1980’s, and has a modest effect

on calculated trends in the upper troposphere (Tarasick et al., 2005).

9. Brewer–Mast response correction20

The quadratic fit to the data shown in Fig. 7 of Tarasick et al. (2002) has a SD of

∼ 7 %. We have added this uncertainty, scaled to the absolute magnitude of the

correction, which is largest at 1000 hPa and quadratic in log(pressure).

10. Iodine loss

Brewer–Mast sondes show increasing errors at higher altitudes relative to ECC25

sondes (Kerr et al., 1994; Fioletov et al., 2007). One possibility for this is solu-

tion evaporation, and/or iodine evaporation from the sensing solution. We have
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included an empirical estimate for this uncertainty of 0.6/p, where p is pressure

in hPa.

11. Ascent rate variation

The relatively slow response of ECC sondes causes their response to lag changes

in the ozone concentration as the balloon rises. This implies that different balloon5

rise rates will give somewhat differing ozone amounts, especially in parts of the

profile with large ozone gradients. We assumed an e−1
response time of 20 s

(Smit and Kley, 1998). The SD of balloon rise rate at Edmonton in the 2000s is

∼ 12 %, which yields modest errors (< 1 %) at the sharp ozone gradients near the

tropopause and mostly insignificant errors elsewhere.10

12. Pressure offset

The error in ozone implied by an a pressure offset equal to the manufacturer’s

estimated 1σ uncertainty is calculated for every point in the profile by multiplying

by the measured ozone gradient. We have used the values quoted by Richner

and Phillips (1981) for the VIZ sonde and Steinbrecht et al. (2008) for the Vaisala15

sondes.

The uncertainty profile is calculated for each flight, using the pressure and ozone

partial pressure data for that flight. Figure 5 shows the average uncertainty profile

for the Brewer–Mast flights at Edmonton, along with the SD of the response of ECC

sondes during the Vanscoy and JOSIE 1996 ozonesonde intercomparison campaigns20

(Kerr et al., 1994; Smit et al., 2007), and the SD of the response of Brewer–Mast son-

des during the Vanscoy campaign (Kerr et al., 1994). Several of the individual contribu-

tions to the overall uncertainty are shown. The total uncertainty without the contribution

from radiosonde pressure offsets, labelled “Same balloon”, is also shown, to facilitate

comparison with the JOSIE 1996 and Vanscoy intercomparison uncertainty estimates,25

which were referenced to a common pressure measurement. It will be noted that the
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uncertainty in the VIZ radiosonde pressure measurement dominates the calculated

uncertainty above about 32 km.

Figure 6 shows similar calculations for the first decade of ECC soundings (3A and

4A models). The VIZ radiosonde was used throughout. As the other sources of uncer-

tainty are smaller, the uncertainty in the VIZ radiosonde pressure measurement now5

dominates the calculated uncertainty above about 26 km. Figures 7 and 8 show similar

calculations for the 1990s and 2000s respectively. Notable improvements are reduc-

tions in background current, and the reduction of pressure offsets with the introduction

of the Vaisala radiosondes.

5 Time series and trend analysis10

For this analysis each ozone profile was represented by a surface-level measurement

(the ozone measurement at sonde release) and 11 layers equally spaced in log pres-

sure (each ∼ 3 km in thickness). Troposphere and stratosphere have been explicitly

separated: that is, integration for the 400–250 hPa layer is from 400 to 250 hPa or the

tropopause, whichever comes first. Similarly, integration of the 250–158 hPa layer starts15

either at 250 hPa or at the tropopause, if the latter is found above 250 hPa. (Cases

where the tropopause is below the 400 hPa height or above 158 hPa occur rarely but

are dealt with similarly). The WMO definition of the tropopause (WMO, 1992) is em-

ployed.

Partial ozone columns were integrated within these 11 layers and divided by the20

pressure difference across each layer to find average ozone mixing ratios. These and

the ground-level mixing ratio values were deseasonalized by subtracting the average

annual cycle as described in Tarasick et al. (1995). The deseasonalized time series

were also adjusted for the effects of diurnal variation in ozone concentration. Sondes

are generally launched at either 12:00 or 00:00 GMT, which are early morning and25

mid-afternoon in Kelowna and Edmonton, and later at other stations. The amount of

diurnal shift (a scalar value for each station at each level) was calculated as the average
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difference between values for the two launch times, where both were available in the

same year and month. The effect is significant primarily at Edmonton, where it can

be as large as 42 % at ground level, and 14 % below 700 hPa (Tarasick et al., 2005).

However, for consistency all stations were adjusted at all levels.

Figures 9 through 14 show time series of percent deviations in average ozone mixing5

ratio for three northern midlatitude stations (Edmonton, Goose Bay, and Churchill) and

for the three Arctic stations (Resolute, Alert, and Eureka). For ease of visualization,

a 4 month running average has been applied to smooth the data.

Figures 9 and 10 show the surface and the three tropospheric layers. The most

notable feature in both cases is that there appears to be no long-term trend in the tro-10

posphere, over the 45 year (midlatitude) or 48 year (Arctic) record, except at the surface

and possibly in the upper troposphere of the Arctic. In the latter cases these trends are

negative. The surface trend at the northern midlatitude sites appears may be primarily

due to urban development near Edmonton (Tarasick et al., 2005), although Churchill

shows a strong decline at the surface in recent decades, for unknown reasons. The15

surface trend at the Arctic sites may be related to an increase in the frequency of

halogen-induced surface ozone depletions, which appear to correlate with negative

anomalies in the surface ozone record shown in Fig. 10. The frequency of such events

at Resolute has increased by nearly 32 % over the 1966–2013 period (Tarasick et al.,

2014).20

The decadal trends (not shown) are much more variable. In general, however, trends

are negative in the 1980s, positive in the 1990s, and small after 2000.

Figures 11 and 12 show the four lower stratospheric layers. Here the long-term trends

are all negative. Notable features are the low values in the early 1990s, and the high

values in the early 2000s, the latter possibly caused by small changes in the Brewer–25

Dobson circulation (Bönisch et al., 2011). These high values cause the lower strato-

spheric trends for 2000–2013 (which might otherwise be expected to show recovery

from stratospheric ozone depletion with declining effective chlorine levels over this pe-

riod) to be negative, both at midlatitudes and in the Arctic. In the Arctic, particularly
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above 100 hPa, the springtime negative anomalies in cold vortex years (1996, 1997,

2000, 2005, and 2011) are evident. At these levels the 2011 anomaly (e.g. Manney

et al., 2011) is larger than the 1993 anomaly related to the eruption of Mt. Pinatubo.

The four middle stratospheric layers (Figs. 13 and 14) show less variability, and the

decadal trends more closely follow the long-term trends at each level. These long-term5

linear trends are shown in Figs. 15–17.

Figure 15 shows calculated trends in ozone mixing ratio from ozonesonde data at

six Canadian stations from 1966–2013 (for Alert and Eureka from 1987 and 1992 re-

spectively), for the ground level and the 11 layers equally spaced in log pressure. To

calculate these trends the deseasonalized station time series were averaged by month,10

and a simple linear regression (without subtraction of QBO, solar-cycle, or other known

influences on ozone) was used to derive trends. Trends are expressed as per cent per

decade, relative to the layer mean. The time series of monthly means show in general

significant autocorrelation both in the stratosphere and the troposphere. Allowance is

made for this in the confidence limits for trends by basing the confidence limit calcula-15

tion on a (reduced) effective sample size, neff = n(1−ρ)/(1+ρ), where ρ is the lag-1

autocorrelation coefficient, and the ozone variability is assumed to be an AR(1) process

(Zwiers and von Storch, 1995; Thiebaux and Zwiers, 1984).

Except at the surface, trends in the troposphere are in general non-significant over

this very significant period. Trends in the middle stratosphere are also non-significant at20

the 95 % (2σ) level, while those in the lower stratosphere are significant and negative.

Trends in the lower stratosphere, however, are as large −5 %decade
−1

over the 48 year

record. To gauge the uncertainty introduced by the addition of the older Brewer–Mast

data, we have also calculated trends using only ECC data (that is, from 1980). The

differences are surprisingly modest.25

For comparison with other analyses in the SI
2
N initiative (e.g. Harris et al., 2015) and

the WMO Scientific Assessment of Ozone Depletion: 2014 (WMO, 2014), in Figs. 16

and 17 we show trends calculated using only data prior to 1997 (Fig. 16), and from

1997–2013 (Fig. 17). The trends for 1966–1996 show a similar picture to that of Fig. 15,
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although here some of the middle stratospheric layers show positive trends. If the

trends are calculated using only data after 1979 (that is, ECC-only data) the trend

picture is quite similar. However, trends in the 17 year period from 1997–2013 are al-

most all non-significant at the 95 % (2σ) level, except at the surface, which shows some

surprisingly large variations. This is true even in the Arctic lower stratosphere, despite5

the large negative anomaly in 1997 (Fig. 14). Since stratospheric halogen loading has

been decreasing during this period (WMO, 2014), the lack of evident ozone recov-

ery may be due to atmospheric variability (Kiesewetter et al., 2010; Chehade et al.,

2014), in particular the high values in the early 2000s, possibly caused by changes in

the Brewer–Dobson circulation (Bönisch et al., 2011). However, the SD of the monthly10

ozone anomalies in the stratosphere at the four long-term stations for the 17 years prior

to 1997 average 8–40 % greater than those for the 17 year period 1997–2013, which

suggests that the stratosphere has in fact been less variable in the latter period.

6 Conclusion

As part of the SPARC/IO3C/IGACO-O3/NDACC (SI
2
N) initiative, Canada’s important15

record of ozone sounding data has been re-evaluated, taking into account the esti-

mated effects of changes in the type and design of ozonesondes used in Canada over

the last five decades.

The effect of the corrections is generally modest, and so should not invalidate past

analyses that have used Canadian network data. However, the overall result is en-20

tirely positive: the comparison with co-located total ozone spectrometers is improved, in

terms of both bias and SD, and trends in the bias have been reduced or eliminated. An

uncertainty analysis (including the additional uncertainty from the corrections, where

appropriate) has also been conducted, and the altitude-dependent estimated uncer-

tainty is included with each revised profile.25

The resulting time series show negative trends in the lower stratosphere of up to

5 %decade
−1

for the period 1966–2013. Most of this decline occurred before 1997,

5234



AMTD

8, 5215–5264, 2015

A re-evaluated

Canadian

ozonesonde record:

1966 to 2013

D. W. Tarasick et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

and linear trends for the more recent period are generally not significant. The time

series also show large variations from year to year. Some of these anomalies can be

related to cold winters (in the Arctic stratosphere), or changes in the Brewer–Dobson

circulation, which may thereby be influencing trends.

In the troposphere trends for the 48 year period are small, and for the most part not5

significant. This suggests that ozone levels in the free troposphere over Canada have

not changed significantly in nearly 50 years.
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Table 1. The Canadian ozonesonde network. Soundings are weekly (generally Wednesdays),

with extra releases during special campaigns (i.e. MATCH, TOPSE, IONS, BORTAS). Regular

ozone soundings have been made at Resolute since January 1966.

Station Location Altitude (m) Start of sonde record

Edmonton 53.6
◦
N, 114.1

◦
W 766 Brewer–Mast (1970); ECC (1979)

Goose Bay 53.3
◦
N, 60.3

◦
W 44 Brewer–Mast (1969); ECC (1980)

Churchill 58.8
◦
N, 94.1

◦
W 35 Brewer–Mast (1973); ECC (1979)

Resolute 74.7
◦
N, 95.0

◦
W 64 Brewer–Mast (1966); ECC (1979)

Eureka 80.1
◦
N, 86.4

◦
W 10 ECC (1992)

Alert 82.5
◦
N, 62.3

◦
W 62 ECC (1987)

Kelowna 49.9
◦
N, 119.4

◦
W 456 ECC (2003)

Bratt’s Lake 50.2
◦
N, 104.7

◦
W 580 ECC (2003–2011)

Egbert 44.2
◦
N, 79.8

◦
W 251 ECC (2003–2011)

Yarmouth 43.9
◦
N, 66.1

◦
W 9 ECC (2003)
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Table 2. Changes in ozonesondes and associated radiosondes in the Canadian network.

Year Change Possible Effect

1979 ECC 3A introduced ∼ 15 % increase in tropospheric response response relative

to BM sondes. Sonde T measured via rod thermistor.

1984 ECC 4A introduced redesigned pump; maximum change< 1 %, at 50–20 hPa.

Sonde “box” T measured; new rod thermistor.

1993 ECC 5A introduced New pump correction; maximum change ∼ 1 %, at 100 hPa

1993 Vaisala RS-80, RSA-11

introduced

Older VIZ sonde: warm bias in daytime; pressure errors.

May introduce altitude shifts in profile; ozone increases of

up to ∼ 2 % at 20 hPa.

1996 ECC 6A No differences below about 20–25 km (Smit et al., 2000)

2000 ENSCI 1Z design change High bias with 1 % KI solution (Smit et al., 2007)

2004 3cc solution (new sites) Better ozone capture in troposphere

2006 Vaisala RS-92 introduced RS80s low by ∼ 20 m in the troposphere, high by 100 m at

10 hPa (Steinbrecht et al., 2008)

2007 Thermistor in ECC pump More accurate measurement of air volume
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Table 3. Cummulative effects of corrections to ozonesonde data for the record at Edmonton

(Stony Plain), as indicated by changes in the comparison of the integrated profile to a coincident

spectophotometric total ozone measurement.

Mean Ratio

(Normalization Factor)

SD Trend in Normalization

Factors

BM data (up to 1979)

Original 1.27 0.303 2.7 %decade
−1

Renormalized 1.20 0.198

Response correction 1.03 0.179 2.2 %decade
−1

ECC data (1980–2013)

Original 0.97 0.101 −2.6±0.6 %decade
−1

All corrections 0.99 0.087 0.6±0.5 %decade
−1
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Table 4. Sources of ozonesonde profile error considered in this analysis and their estimated

magnitudes. See text for details.

Error Source Uncertainty (1σ)

BM 3A 4A 5A/6A 2Z

Stoichiometry ±1.0 % ±1.0 % ±1.0 % ±1.0 % ±1.0 %

T measurement ±3.0 % ±0.3 % ±0.3 % ±0.2 % ±0.2 %

Pump calibration ±0.5 % ±0.5 % ±0.5 % ±0.5 % ±0.5 %

Pump cal. RH error – ±0.5 % ±0.5 % ±0.5 % ±0.5 %

En-Sci 1 % KI

correction error

– – – – ±0.5 %

Pump corr. error

(100 hPa/10 hPa)

±2.0 %/±6.9 % ±0.5 %/±2.1 % ±1.1 %/±2.6 % ±1.1 %/±2.6 % ±1.1 %/±2.6 %

2.5 mL solution

corr. error (∝ p)

±4 % (sl) ±4 % (sl) ±4 % (sl) ±4 % (sl) ±4 % (sl)

Background

current

±0.05 mPa iB(1−p/p0) iB(1−p/p0) iB(1−p/p0) iB(1−p/p0)

BM response corr.

error (∝ correction)

±7.0 % (sl) – – – –

Iodine loss (∝ 1/p) ±6 % (10 hPa) – – – –

Ascent rate

variation

– ±12% ·e−∆t/τ
∇O3 ±12% ·e−∆t/τ

∇O3 ±12% ·e−∆t/τ
∇O3 ±12% ·e−∆t/τ

∇O3

Pressure offset ±1 hPa (VIZ) ±1 hPa (VIZ) ±1 hPa (VIZ) ±0.5 hPa (RS80) ±0.5 hPa (RS80)

±0.15 hPa (RS92)
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Figure 1. Average ozone profile at Edmonton before (NONE) and after corrections to the

Brewer–Mast record. The largest change is in the lowermost troposphere, where the response

correction raises ozone values by about 15 %.
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Figure 2. As Fig. 1, but for the first decade of ECC soundings. The changes to the ECC record

in the 1980s are comparatively minor.
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Figure 3. As Fig. 1, but for the 1990s.
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Figure 4. As Fig. 1, but for the 2000s. Overall changes to the record are minor.
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Figure 5. Average estimated uncertainty of Brewer–Mast soundings at Edmonton, showing

contributions from selected sources. “Same balloon” indicates the total uncertainty without

the contribution from radiosonde pressure offsets, to facilitate comparison with the JOSIE and

Vanscoy intercomparison uncertainty estimates, which were referenced to a common pressure

measurement. The uncertainty in the VIZ radiosonde pressure measurement dominates the

calculated uncertainty above about 32 km.
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Figure 6. Average estimated uncertainty of ECC (3A and 4A) soundings in the 1980s at Ed-

monton, showing contributions from selected sources. “Same balloon” indicates the total un-

certainty without the contribution from radiosonde pressure offsets, to facilitate comparison

with the JOSIE and Vanscoy intercomparison uncertainty estimates, which were referenced to

a common pressure measurement. As the overall uncertainty is smaller, the uncertainty in the

VIZ radiosonde pressure measurement now dominates the calculated uncertainty above about

26 km.
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Figure 7. Average estimated uncertainty of ECC (4A and 5A) soundings in the 1990s at Ed-

monton, showing contributions from selected sources. The uncertainty in the VIZ or (from 1994)

RS-80 radiosonde pressure measurement dominates the calculated uncertainty above about

28 km.
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Figure 8. Average estimated uncertainty of ECC (5A and En-Sci) soundings in the 2000s at

Edmonton, showing contributions from selected sources. The uncertainty in the RS-80 or (from

2006) RS-92 radiosonde pressure measurement now dominates the calculated uncertainty

only above about 31 km.
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Figure 9. Percent deviations in average ozone mixing ratio for the surface and three tropo-

spheric layers, for three midlatitude stations. Monthly anomalies have been smoothed with

a four-month running average. The overall station trend lines (up to 45 years in the case of

Goose Bay) are shown. The troposphere and stratosphere have been explicitly separated: that

is, integration for the 400–250 hPa layer is from 400 to 250 hPa or the tropopause, whichever

comes first.
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Figure 10. As Fig. 9, for the three Arctic stations. The overall station trend lines (up to 48 years

in the case of Resolute) are shown.
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Figure 11. Percent deviations in average ozone mixing ratio for four lower stratospheric lay-

ers, using data from three midlatitude stations. Monthly anomalies have been smoothed with

a four-month running average. The overall station trend lines are shown. The troposphere and

stratosphere have been explicitly separated: that is, integration of the 250–158 hPa layer starts

either at 250 hPa or at the tropopause, if the latter is found above 250 hPa.
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Figure 12. As Fig. 11, for the three Arctic stations. The overall station trend lines are shown.
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Figure 13. Percent deviations in average ozone mixing ratio for four middle stratospheric layers,

using data from three midlatitude stations. Monthly anomalies have been smoothed with a four-

month running average. The overall station trend lines are shown.
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Figure 14. As Fig. 13, for the three Arctic stations. The overall station trend lines are shown.
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Figure 15. Linear trends in ozone mixing ratio for the overall (48 year) period at the six Cana-

dian sites with long-term ozonesonde records, for the surface and 11 layers equally spaced

in log pressure (∼ 3 km). Error bars show 95 % (2σ) confidence limits. The troposphere and

stratosphere have been explicitly separated: that is, integration of the 250–158 hPa layer starts

either at 250 hPa or at the tropopause, if the latter is found above 250 hPa. Similarly, integration

of the 250–158 hPa layer starts either at 250 hPa or at the tropopause, if the latter is found

above 250 hPa. Trends using only ECC data (from 1980) are shown in red.

5262



AMTD

8, 5215–5264, 2015

A re-evaluated

Canadian

ozonesonde record:

1966 to 2013

D. W. Tarasick et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Figure 16. As Fig. 15, but for 1966–1996. Trends using only ECC data (from 1980) are shown

in red.
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Figure 17. As Fig. 15, but for 1997–2013.
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