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Using ab initio computational methods, we study the structural and electronic properties of strained silicon, which has emerged
as a promising technology to improve the performance of silicon-based metal-oxide-semiconductor 	eld-e
ect transistors. In
particular, higher electron mobilities are observed in n-doped samples with monoclinic strain along the [110] direction, and
experimental evidence relates this to changes in the e
ective mass as well as the scattering rates. To assess the relative importance
of these two factors, we combine density-functional theory in the local-density approximation with the �� approximation for
the electronic self-energy and investigate the e
ect of uniaxial and biaxial strains along the [110] direction on the structural and
electronic properties of Si. Longitudinal and transverse components of the electron e
ective mass as a function of the strain are
derived from 	ts to the quasiparticle band structure and a diagonalization of the full e
ective-mass tensor. �e changes in the
e
ectivemasses and the energy splitting of the conduction-band valleys for uniaxial and biaxial strains as well as their impact on the
electron mobility are analyzed.�e self-energy corrections within �� lead to band gaps in excellent agreement with experimental
measurements and slightly larger e
ective masses than in the local-density approximation.

1. Introduction

Silicon retains its place as the most prominent mate-
rial used in technological applications such as metal-
oxide-semiconductor 	eld-e
ect transistor (MOSFET) based
devices. �is success stems from the sustained increase
in performance that could be achieved, over many years,
by continuous geometric downscaling. Nowadays, however,
as devices approach their physical and geometrical limits,
other solutions must be found to uphold the trend of
Moore’s law. Strain engineering has become one of the
promising scaling vectors in this context, because it can lead
to higher carrier mobility and faster switching times than
in conventional devices based on unstrained silicon while
remaining fully compatible with existing manufacturing
technology [1, 2]. Strained silicon is already used in mass-
scale industrial production since the 90 nm node, together
with new dielectric materials and other boost factors. �e
most establishedmethod to obtain strained layers of silicon is
to grow a silicon-germanium 	lm on top of a standard wafer,

which then serves as an atomic template for the subsequent
epitaxial growth of silicon layers [3]. �ese adopt the larger
lateral lattice constant of the silicon-germanium substrate
and therefore exhibit biaxial tensile strain. With this growth
process, around 1% strain in the Si layer can be achieved,
which enhances the electronmobility by a factor of 1.8–2.0 [2,
4–6]. �e enhancement of the hole mobility is negligible [6],
on the other hand, as this would require signi	cantly higher
tensile strain, which can not easily be realized by epitaxy.
Di
erent techniques have been pursued in this situation until
uniaxial strain was introduced into theMOSFET channel [7–
10], which promises to enhance the electron andholemobility
even at smaller strain than 1% [10, 11]. In order to implement
uniaxial strain, stress liner techniques are commonly used,
where capping layers, usually of silicon nitride, are grown
on top of the transistor to produce compressive or tensile
strain depending on the deposition conditions. Heteroepi-
taxial strain techniques, where epitaxial growth of SiGe and
SiC in etched recesses near the source and drain generates
uniaxial strain due to the lattice mismatch with the silicon
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channel, may also be employed. In this way, a hole mobility
enhancement by a factor of 2 has been observed for �-type
MOSFETs with 2GPa uniaxial stress [12, 13].

Although early theoretical studies [14–18] already pro-
vided a qualitative understanding of strain e
ects on the elec-
tronic structure of Si, actual progress was so farmainly driven
by experiments that measure the impact of a particular strain
con	guration on the charge carrier mobility, for instance,
through changes in the resistivity. Several parameters, in fact,
independently in�uence the carrier mobility in MOSFETs:
	rst, the e
ective masses are inversely proportional to the
curvature of the energy bands. If strain modi	es the energy
bands, this will lead to changes in the e
ective masses. Sec-
ond, the scattering rates of the charge carriers can be reduced
by a partial li�ing of band-edge degeneracies in strained
samples with reduced symmetry. Indeed, for certain strain
con	gurations, the number of available scattering channels
for electrons residing in the lowest conduction-band valleys
naturally decreases. In addition, surface roughness and other
process-induced factors may in�uence the mobility in actual
devices. �erefore, it is di�cult to assess the quantitative
role of the individual contributing factors on the basis of
experimental measurements alone. To answer this question,
we conducted a combined theoretical and experimental study
of biaxial tensile strain in the (001) plane of �-type Si [19],
corresponding to a tetragonal distortion of the unit cell. Our
measurements indicate no change in the electron e
ective
mass, obtained from the temperature dependence of the
Shubnikov-de Haas oscillation amplitudes, which is consis-
tent with our ab initio band-structure calculations that show
no warping of the lowest conduction band up to 1% applied
strain. �e observed enhancement of the mobility is hence
attributed mainly to the partial splitting of the originally
sixfold degenerate conduction-band valleys, which reduces
the scattering rate. In the case of biaxial tensile strain in the
(111) plane, corresponding to a trigonal distortion of the unit
cell, the six conduction-band valleys remain degenerate, so
that the scattering channels are una
ected. As all components
of the e
ective mass tensor furthermore increase with strain
[20], the trigonal distortion may even reduce the electron
mobility. On the other hand, for monoclinic deformations
along the [110] direction, experimental evidence suggests
that both the e
ectivemass of the charge carriers and the scat-
tering rate contribute to the observed high electron mobility
in �-doped samples. It was also reported that uniaxial strain
induces a much larger mobility enhancement for both elec-
trons and holes [21–23] than wafer-based biaxial strain [24].

�eoretical simulations of the carrier mobility require an
accurate knowledge of the electronic band structure under
strain, but the vast majority of band-structure calculations
dealing with strained Si rely on empirical approaches that
require input parameters from experiments or, like density-
functional theory (DFT) within the local-density approxima-
tion (LDA), exhibit systematic errors. To circumvent these
problems, here we instead employ ab initio computational
methods that combineDFT-LDA and the�� approximation
for the electronic self-energy in order to obtain highly accu-
rate quantitative results for the band structure, the variation
of the e
ective masses, and the valley splitting as functions

of the applied strain. We focus on uniaxial and biaxial [110]
strains, because this monoclinic deformation is the most
promising for achieving high charge carrier mobilities.

�is paper is organized as follows. In Section 2 we give an
overview of our computationalmethod and discuss the struc-
tural parameters of silicon under a monoclinic deformation
along the [110] direction. In Section 3 we then present our
results for the electronic structure and compare the e
ects of
tensile biaxial and uniaxial strains on the electronmobility by
analyzing the changes in the e
ectivemasses and the splitting
of the conduction-band valleys. We 	nally summarize our
conclusions in Section 4.

2. Computational Method

We start by performing a series of ab initio calculations
using density-functional theory [25] within the local-density
approximation [26] to determine the structural properties
of silicon under uniaxial and biaxial strains in the [110]
direction. While the ground-state total energy for a given
atomic con	guration is accurately described by the DFT-
LDA approach, the Kohn-Sham eigenvalue dispersion di
ers
systematically from the true quasiparticle band structure.
In particular, band gaps are severely underestimated, but
the band curvature and hence the e
ective masses also
show deviations. For this reason, we employ many-body
perturbation theory and the �� approximation for the
electronic self-energy [27], which yields quasiparticle band
structures in excellent agreement with experimental photoe-
mission data. �e derived e
ective masses also agree well
with experimentally measured values, not only for solids like
silicon [19], but also for very di
erent materials, such as
organic semiconductors [28, 29].

Our calculations use nonlocal norm-conserving pseu-
dopotentials and a plane-wave basis set with a cuto
 energy of
20 Ry. We choose the parametrization of Perdew and Zunger
[30] for the exchange-correlation functional. �e structural
optimization within DFT-LDA is performed with a 10 × 10 ×10 k-point set in the full Brillouin zone, whereas a sampling
of 4 × 4 × 4 k points su�ces for the quasiparticle shi�s in the�� approximation. �e self-energy is constructed with 100
unoccupied bands in the standard perturbative way from the
Kohn-Sham orbitals, and we evaluate the dynamic screen-
ing function in the random-phase approximation without
recourse to plasmon-pole models [31, 32].

Crystal deformations are described by the strain tensor�, which transforms the primitive lattice vectors a1, a2, and
a3 according to a

�
� = (� + �)a�, where � denotes the

identitymatrix. Formonoclinic deformations along the [110]
direction, the strain tensor takes the following form:

� =(�‖ + �⊥2 �‖ − �⊥2 0�‖ − �⊥2 �‖ + �⊥2 00 0 �‖), (1)

where �‖ is the strain component in the (110) plane and�⊥ is the out-of-plane strain parameter along the [110]
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Figure 1: Contour plot of the total energy in meV per unit cell as
a function of the in-plane strain parameter �‖ and the out-of-plane
parameter �⊥ formonoclinic deformations along the [110] direction.
�e orange and red dots refer to con	gurations with uniaxial and
biaxial strains, respectively.

direction. Under equilibrium conditions silicon crystallizes
in the diamond structure with two atoms per unit cell and
24 symmorphic point symmetries.�emonoclinic distortion
reduces the number of symmetry operations to four. As a
consequence, the relative positions of the two atoms inside
the unit cell are no longer 	xed by symmetry constraints,
and internal displacements will occur. In our calculations we
take this internal relaxation fully into account and determine
the optimal sublattice spacing byminimizing the total energy
separately for each con	guration. �e internal displacement
parameter 
 derived from our results depends linearly on
the strain, but the deviation from the limiting value 
 =0.53 at zero strain is small for experimentally achievable
deformations.

�e elastic moduli as well as related quantities can be
determined from the change in total energy as a function of
the applied strain. A contour plot of the total energy �(�‖, �⊥)
formonoclinic deformations is shown in Figure 1. To simulate
uniaxial (orange dots) and biaxial (red dots) strains, we 	x
one of the two strain parameters and determine the other by
a constrained energy minimization:

�� (�‖, �⊥ = �uniax)��‖ = 0, �� (�‖ = �biax, �⊥)��⊥ = 0, (2)

respectively. For small deformations the relation between
the two components of the strain is linear and is given by
the Poisson ratio ] = −�⊥/�‖. �e values for biaxial and
uniaxial strains obtained here directly from 	rst principles
are consistent with those derived from the elastic constants
calculated in [20] and with experiments.

3. Results and Discussion

As an illustration, Figure 2 shows the quasiparticle band
structure for unstrained silicon and for uniaxial strain �uniax =2.5%along the [110] direction.�e�� approximation yields
a fundamental band gap of 1.17 eV for bulk silicon, which
matches the experimental value [33], while the DFT-LDA
eigenvalue gap is only 0.46 eV due to the well-known system-
atic underestimation resulting from the local approximation
of the exchange-correlation functional. For tensile uniaxial
strain the sixfold degenerate conduction-band minimum
splits into two valleys Δ 2 with lower energy along the Γ–�
direction and four others Δ 4 with higher energy along theΓ–� direction. �e situation is di
erent for tensile biaxial
strain, where the Δ 2 valleys are higher in energy than theΔ 4 valleys. In both cases, as displayed in Figure 3, the band
gap decreases with strain, but the splitting between theΔ 2 and Δ 4 valleys is more pronounced for uniaxial strain.
Furthermore, for uniaxial strain the splitting grows with
increasing strain, which reduces the scattering rate because
only the two lower occupied Δ 2 valleys a
ect the electron
mobility. In the case of biaxial strain, the splitting between
the Δ 4 and Δ 2 valleys is much smaller than that for uniaxial
strain, and the energetic ordering in fact changes for strain
above �biax = 3.25%, where the Δ 2 valleys are lower in
energy. �is regime of large tensile biaxial strain in the (110)
plane might hence be interesting for an enhancement of
the electron mobility. �e crossing of the valley positions
was already observed in an earlier empirical tight-binding
study of the band-edge energies of strained silicon grown
coherently on a Si1−�Ge�(110) substrate [34], but the crossing
occurred at a smaller germanium concentration of � = 0.5
than that corresponding to the strain value 3.25% predicted
here by our ab initio calculation, which includes no empirical
input parameters.

As mentioned in the introduction, the scattering rate and
the e
ective mass are two principal factors that a
ect the
charge carrier mobility. �e splitting of the bands reduces
the scattering rate if it exceeds the thermal energy, and the
warping of the bands has an impact on the e
ective masses,
which are related to the band curvature. �is point can
be seen in Figure 4, where we show contour plots of the
quasiparticle energy ��k in the �� = 0 plane of the Brillouin
zone for the lowest conduction band of silicon without strain
andwith 3.0% uniaxial strain.�e 	gure clearly illustrates the
symmetry reduction due to the applied uniaxial strain in the

lower panel, as the [110] and [110] directions are no longer
equivalent for a monoclinic distortion of the unit cell.

To obtain the e
ective masses as a function of the strain,
wemust construct the components of the full tensor and then
diagonalize it for each band-edge state. Due to the symmetry
reduction resulting from the monoclinic distortion, which
also a
ects the geometry of the Brillouin zone, the fourfold
degenerate Δ 4 valleys of the conduction band are no longer
found along the [100] and [010] axes, as for unstrained
silicon, but move away from these high-symmetry lines into
the �� = 0 plane. �is situation is illustrated for uniaxial
strain in the lower panel of Figure 4, where all valleys are
seen to lie in the second and fourth quadrant. As a 	rst
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Figure 2: Band structure of Si within DFT-LDA (dashed lines) and �� (solid lines) without strain (le�) and with 2.5% uniaxial strain in
the [110] direction (right). �e six originally degenerate conduction-band minima (le� panel) split into two lower Δ 2 valleys along the Γ–�
direction and four higher Δ 4 valleys along the Γ–� direction (right panel).
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Figure 3: Band gap of silicon versus strain for tensile uniaxial (a) and biaxial (b) strains along the [110] direction within DFT-LDA and ��
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Figure 4: Contour plot of ��k in the �� = 0 plane of the Brillouin zone for the lowest conduction bandwithout strain (a) andwith 3.0%uniaxial
strain in the [110] direction (b). �e quasiparticle energies are given in eV and relative to the minimum of the band in each con	guration.

step, we determine the position k0 of a band minimum in
the �� = 0 plane using a two-dimensional steepest descent

method. Subsequently, we calculate the curvatures �2��k/��2	
with � ∈ {�, �, �} at the band minimum from polynomial
	ts on a dense mesh of k points along the three Cartesian

axes as well as �2��k(
)/��2 along a diagonal path in the [110]
direction parametrized by k(�) = k0 + �(1, 1, 0)/√2. �e o
-
diagonal components of the e
ective-mass tensor

1�∗ =((((
�2��k��2� �2��k������ 0�2��k������ �2��k��2� 00 0 �2��k��2�

)))
)

(3)

at k0 can then be constructed according to�2��k������ = �2��k(
)��2 − 12 (�2��k��2� + �2��k��2� ) . (4)

�e diagonalization of this tensor yields three distinct
e
ective-mass values, of which one is large and can be
identi	ed with the longitudinal e
ective mass �∗
 and two
are transverse masses with smaller numerical values �∗� . To
avoid the laborious minimum search by the steepest descent
method, we have also attempted, as an approximation, to
evaluate the band curvatures at the k point obtained by
applying the strain tensor to the location (0.84)� of the
conduction-band minimum of unstrained silicon, which is
very close to k0. As the resulting values for the e
ective
masses are almost identical, most of our data are actually
obtained in this way. �e reduced symmetry due to the
monoclinic distortion does not shi� the Δ 2 valleys away

from the [001] axis. �erefore, no steepest descent method
is required, and the minima are easily found by a one-
dimensional search along the Γ–� direction. Furthermore,
the e
ective-mass tensor is diagonal in this case with one
longitudinal and two degenerate transverse components.

In Figures 5 and 6 we display the calculated variation of
the longitudinal and transverse components of the electron
e
ective mass for uniaxial and biaxial strains, respectively.
�e splitting of the conduction band into Δ 2 and Δ 4 valleys
implies that these have distinct e
ective masses. �e e
ective
masses associated with the Δ 4 valleys are almost una
ected
by the distortion and remain close to those of unstrained
silicon. As already stated above, the fourfold degenerate Δ 4
valleys are higher in energy for uniaxial strain and lower in
energy for biaxial strain up to �biax = 3.25%. Tensile uniaxial
strain is hence of particular interest, because the twofold
degenerate Δ 2 valleys not only are the lowest in energy but
also feature small transverse electron e
ective masses��[110]
that decrease even further as �uniax increases. In the case of
biaxial strain, the Δ 2 valleys show a similar behavior as a
function of �biax, but they are higher in energy than the Δ 4
valleys and thus irrelevant for electron transport. According
to our quantitative assessment of the band structure, the
splitting between the Δ 4 and Δ 2 valleys exceeds the thermal
energy ��% = 25meV at room temperature, so that only theΔ 4 valleys will be populated until the strain exceeds 3.25%,
where the ordering of the Δ 4 and Δ 2 valleys changes. Figures
5 and 6 further show that the longitudinal e
ective mass
associated with the Δ 2 valleys grows rapidly with the strain
strength for both uniaxial and biaxial strains.

A comparison between the DFT-LDA and �� results
reveals that the latter systematically predicts slightly larger
values for the e
ective masses. �e narrowing of the energy
dispersion in the �� approximation, which gives rise to
the larger e
ective masses, has been observed in other
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Figure 5: Longitudinal (a) and transverse (b) components of the
electron e
ective mass in silicon as a function of tensile uniaxial
strain in the [110] direction. �e solid and dashed lines distinguish
the two transverse elements of the mass tensor.

systems before. It stems from the interaction of the electron
with its environment, which rearranges due to quantum-
mechanical correlation and acts back on the electron, slowing
its further motion. Mathematically, the self-energy insertion
redistributes spectral weight from the density of states to
create satellite resonances [35].

4. Conclusions

We have studied the structural deformation of bulk silicon
for uniaxial and biaxial strains along the [110] direction with
full internal and volume relaxation using DFT-LDA. On this
basis, we then quantitatively determined the electronic struc-
ture of strained silicon with proper quasiparticle corrections
using the �� approximation for the electronic self-energy.
For tensile uniaxial strain with realistic strain parameters,
we 	nd that the splitting between the occupied Δ 2 and the
unoccupiedΔ 4 valleys is large, implying a reduced intervalley
scattering, and the electron mobility is further enhanced by
a reduced transverse e
ective mass. No such reduction is
found for the fourfold degenerate occupied Δ 4 valleys in the
case of biaxial strain. In previous work we also examined
the e
ect of strain along other directions and demonstrated
that the electron e
ective mass is not modi	ed by biaxial
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Figure 6: Longitudinal (a) and transverse (b) components of the
electron e
ectivemass in silicon as a function of tensile biaxial strain
in the (110) plane. �e solid and dashed lines distinguish the two
transverse elements of the mass tensor.

strain along the [001] direction [19]. �erefore, any increase
of themobility stems entirely from the reduced scattering rate
due to the splitting of the conduction-band valleys in this
case. Biaxial trigonal distortions along the [111] direction are
also not relevant for increasing the mobility [20]. We hence
conclude that tensile uniaxial strain along the [110] direction
is indeed the most promising con	guration to achieve high
electron mobility in silicon, as both the scattering rate and
the e
ective mass are reduced in this scenario. Tensile biaxial
strain in the (110) plane could also be interesting, but a large
strain value above 3.25% is then needed, which might be
di�cult to realize in practical epitaxy.
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[19] S. F. Feste, T. Schäpers, D. Buca et al., “Measurement of e
ective
electron mass in biaxial tensile strained silicon on insulator,”
Applied Physics Letters, vol. 95, no. 18, Article ID 182101, 2009.

[20] M. Bouhassoune andA. Schindlmayr, “Electronic structure and
e
ective masses in strained silicon,” Physica Status Solidi C, vol.
7, no. 2, pp. 460–463, 2010.

[21] K. Uchida, T. Krishnamohan, K. C. Saraswat, and Y. Nishi,
“Physical mechanisms of electron mobility enhancement in
uniaxial stressed MOSFETs and impact of uniaxial stress
engineering in ballistic regime,” in Proceedings of the IEEE
International Electron Devices Meeting (IEDM ’05). Technical
Digest, pp. 129–132, Washington, DC, USA, December 2005.

[22] S. E. �ompson, G. Sun, Y. S. Choi, and T. Nishida, “Uniaxial-
process-induced strained-Si: extending the CMOS roadmap,”
IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1010–
1020, 2006.
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