001     276648
005     20210129220924.0
024 7 _ |2 doi
|a 10.1140/epjst/e2015-02445-4
024 7 _ |2 ISSN
|a 1951-6355
024 7 _ |2 ISSN
|a 1951-6401
024 7 _ |2 WOS
|a WOS:000357489600005
037 _ _ |a FZJ-2015-06976
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Schmakat, P.
|b 0
|e Corresponding author
245 _ _ |a Spin dynamics and spin freezing at ferromagnetic quantum phase transitions
260 _ _ |a Berlin
|b Springer
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1457083095_14706
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a We report selected experimental results on the spin dynamics and spin freezing at ferromagnetic quantum phase transitions to illustrate some of the most prominent escape routes by which ferromagnetic quantum criticality is avoided in real materials. In the transition metal Heusler compound Fe2TiSn we observe evidence for incipient ferromagnetic quantum criticality. High pressure studies in MnSi reveal empirical evidence for a topological non-Fermiliquidstate without quantum criticality. Single crystals of the hexagonal Laves phase compound Nb1−yFe2+y provide evidence of a ferromagnetic to spin density wave transition as a function of slight compositional changes. Last but not least, neutron depolarisation imaging in CePd1−xRhx underscore evidence taken from the bulk properties of the formation of a Kondo cluster glass.
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 0
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |0 G:(DE-HGF)POF3-6G4
|a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|c POF3-623
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|a Condensed Matter Physics
|x 0
650 2 7 |0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|a Magnetism
|x 1
650 2 7 |0 V:(DE-MLZ)SciArea-240
|2 V:(DE-HGF)
|a Crystallography
|x 2
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 1
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-1
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)ANTARES-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)ANTARES-20140101
|6 EXP:(DE-MLZ)SR4a-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e ANTARES: Cold neutron radiography and tomography station
|f SR4a
|x 0
693 _ _ |0 EXP:(DE-MLZ)HEIDI-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)HEIDI-20140101
|6 EXP:(DE-MLZ)SR9b-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e HEiDi: Single crystal diffractometer on hot source
|f SR9b
|x 1
693 _ _ |0 EXP:(DE-MLZ)RESI-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)RESI-20140101
|6 EXP:(DE-MLZ)SR8b-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e RESI: Thermal neutron single crystal diffractometer
|f SR8b
|x 2
693 _ _ |0 EXP:(DE-MLZ)SPODI-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)SPODI-20140101
|6 EXP:(DE-MLZ)SR8a-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e SPODI: High resolution powder diffractometer
|f SR8a
|x 3
693 _ _ |0 EXP:(DE-MLZ)MIRA-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)MIRA-20140101
|6 EXP:(DE-MLZ)NL6N-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e MIRA: Multipurpose instrument
|f NL6N
|x 4
693 _ _ |0 EXP:(DE-MLZ)PUMA-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)PUMA-20140101
|6 EXP:(DE-MLZ)SR7-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e PUMA: Thermal three axes spectrometer
|f SR7
|x 5
700 1 _ |0 P:(DE-HGF)0
|a Wagner, M.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Ritz, R.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Bauer, A.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Brando, M.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Deppe, M.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Duncan, W.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Duvinage, C.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Franz, C.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Geibel, C.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Grosche, F. M.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Hirschberger, M.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Hradil, K.
|b 12
700 1 _ |0 P:(DE-Juel1)164297
|a Meven, M.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Neubauer, A.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Schulz, M.
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Senyshyn, A.
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Süllow, S.
|b 17
700 1 _ |0 P:(DE-Juel1)166245
|a Pedersen, Björn
|b 18
700 1 _ |0 P:(DE-HGF)0
|a Böni, P.
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Pfleiderer, C.
|b 20
773 _ _ |0 PERI:(DE-600)2267176-6
|a 10.1140/epjst/e2015-02445-4
|g Vol. 224, no. 6, p. 1041 - 1060
|n 6
|p 1041 - 1060
|t European physical journal special topics
|v 224
|x 1951-6401
|y 2015
856 4 _ |u http://link.springer.com/article/10.1140/epjst/e2015-02445-4
856 4 _ |u https://juser.fz-juelich.de/record/276648/files/e2015-02445-4.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276648/files/e2015-02445-4.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276648/files/e2015-02445-4.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276648/files/e2015-02445-4.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276648/files/e2015-02445-4.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276648/files/e2015-02445-4.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:276648
|p VDB:MLZ
|p VDB
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)140200
|a External Institute
|b 3
|k Extern
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)164297
|a Rheinisch-Westfälische Technische Hochschule
|b 13
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)164297
|a Forschungszentrum Jülich GmbH
|b 13
|k FZJ
910 1 _ |0 I:(DE-588b)4597118-3
|6 P:(DE-Juel1)164297
|a Heinz Maier-Leibnitz Zentrum
|b 13
|k MLZ
910 1 _ |0 I:(DE-588b)4597118-3
|6 P:(DE-HGF)0
|a Heinz Maier-Leibnitz Zentrum
|b 16
|k MLZ
910 1 _ |0 I:(DE-588b)36241-4
|6 P:(DE-HGF)0
|a Technische Universität München
|b 16
|k TUM
910 1 _ |0 I:(DE-588b)36241-4
|6 P:(DE-Juel1)166245
|a Technische Universität München
|b 18
|k TUM
910 1 _ |0 I:(DE-588b)4597118-3
|6 P:(DE-Juel1)166245
|a Heinz Maier-Leibnitz Zentrum
|b 18
|k MLZ
913 1 _ |9 G:(DE-HGF)POF3-6G15
|a DE-HGF
|x 0
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|9 G:(DE-HGF)POF3-6G4
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v Facility topic: Neutrons for Research on Condensed Matter
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b EUR PHYS J-SPEC TOP : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21