000276650 001__ 276650
000276650 005__ 20210129220924.0
000276650 0247_ $$2doi$$a10.1039/C5TA05767A
000276650 0247_ $$2ISSN$$a2050-7488
000276650 0247_ $$2ISSN$$a2050-7496
000276650 0247_ $$2WOS$$aWOS:000363163200037
000276650 037__ $$aFZJ-2015-06978
000276650 082__ $$a540
000276650 1001_ $$0P:(DE-HGF)0$$aCeretti, M.$$b0$$eCorresponding author
000276650 245__ $$aLow temperature oxygen diffusion mechanisms in Nd $_{2}$ NiO $_{4+δ}$ and Pr $_{2}$ NiO $_{4+δ}$ via large anharmonic displacements, explored by single crystal neutron diffraction
000276650 260__ $$aLondon {[u.a.]$$bRSC$$c2015
000276650 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449670122_32511
000276650 3367_ $$2DataCite$$aOutput Types/Journal article
000276650 3367_ $$00$$2EndNote$$aJournal Article
000276650 3367_ $$2BibTeX$$aARTICLE
000276650 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276650 3367_ $$2DRIVER$$aarticle
000276650 520__ $$aWe investigated the structure of Nd2NiO4+δ and Pr2NiO4+δ by single crystal neutron diffraction studies. While the real structure of both compounds is incommensurate, the scattering density of the respective average structures was explored using the Maximum Entropy Method. Unusually high displacement factors were found for the equatorial and apical oxygen atoms showing respectively large displacement amplitudes towards [001] and [110] with respect to the F-symmetry cell. The shifts of the apical oxygen atoms reach up to 1 Å from their average position, corresponding to a 25° tilt of the NiO6 octahedra. At 400 °C, i.e. slightly above the orthorhombic-tetragonal phase transition, the anharmonic apical oxygen displacements towards [110] in the commensurate tetragonal parent structure are strongly enhanced, showing a double-well potential and pointing towards the interstitial vacancy sites, creating a quasi continuous shallow energy diffusion pathway between apical and interstitial oxygen sites. These large displacement amplitudes are considered to be – at least partially – of dynamical origin, which is consistent with a phonon assisted diffusion mechanism, already activated at very moderate temperatures.
000276650 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000276650 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000276650 588__ $$aDataset connected to CrossRef
000276650 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000276650 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000276650 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x2
000276650 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000276650 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x0
000276650 693__ $$0EXP:(DE-MLZ)RESI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)RESI-20140101$$6EXP:(DE-MLZ)SR8b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eRESI: Thermal neutron single crystal diffractometer$$fSR8b$$x1
000276650 7001_ $$0P:(DE-HGF)0$$aWahyudi, O.$$b1
000276650 7001_ $$0P:(DE-HGF)0$$aCousson, A.$$b2
000276650 7001_ $$0P:(DE-HGF)0$$aVillesuzanne, A.$$b3
000276650 7001_ $$0P:(DE-Juel1)164297$$aMeven, M.$$b4$$ufzj
000276650 7001_ $$0P:(DE-Juel1)166245$$aPedersen, B.$$b5$$ufzj
000276650 7001_ $$0P:(DE-HGF)0$$aBassat, J. M.$$b6
000276650 7001_ $$0P:(DE-HGF)0$$aPaulus, W.$$b7
000276650 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/C5TA05767A$$gVol. 3, no. 42, p. 21140 - 21148$$n42$$p21140 - 21148$$tJournal of materials chemistry / A$$v3$$x2050-7496$$y2015
000276650 8564_ $$uhttp://pubs.rsc.org/en/content/articlehtml/2015/ta/c5ta05767a
000276650 8564_ $$uhttps://juser.fz-juelich.de/record/276650/files/meven_Low%20temperature%20oxygen%20diffusion%20mechanisms%20in.pdf$$yRestricted
000276650 8564_ $$uhttps://juser.fz-juelich.de/record/276650/files/meven_Low%20temperature%20oxygen%20diffusion%20mechanisms%20in.gif?subformat=icon$$xicon$$yRestricted
000276650 8564_ $$uhttps://juser.fz-juelich.de/record/276650/files/meven_Low%20temperature%20oxygen%20diffusion%20mechanisms%20in.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000276650 8564_ $$uhttps://juser.fz-juelich.de/record/276650/files/meven_Low%20temperature%20oxygen%20diffusion%20mechanisms%20in.jpg?subformat=icon-180$$xicon-180$$yRestricted
000276650 8564_ $$uhttps://juser.fz-juelich.de/record/276650/files/meven_Low%20temperature%20oxygen%20diffusion%20mechanisms%20in.jpg?subformat=icon-640$$xicon-640$$yRestricted
000276650 8564_ $$uhttps://juser.fz-juelich.de/record/276650/files/meven_Low%20temperature%20oxygen%20diffusion%20mechanisms%20in.pdf?subformat=pdfa$$xpdfa$$yRestricted
000276650 909CO $$ooai:juser.fz-juelich.de:276650$$pVDB$$pVDB:MLZ
000276650 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000276650 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000276650 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2014
000276650 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000276650 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000276650 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000276650 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000276650 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000276650 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000276650 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000276650 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM A : 2014
000276650 9141_ $$y2015
000276650 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000276650 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164297$$aRheinisch-Westfälische Technische Hochschule$$b4$$kRWTH
000276650 9101_ $$0I:(DE-588b)4597118-3$$6P:(DE-Juel1)164297$$aHeinz Maier-Leibnitz Zentrum$$b4$$kMLZ
000276650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164297$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000276650 9101_ $$0I:(DE-588b)4597118-3$$6P:(DE-Juel1)166245$$aHeinz Maier-Leibnitz Zentrum$$b5$$kMLZ
000276650 9101_ $$0I:(DE-588b)36241-4$$6P:(DE-Juel1)166245$$aTechnische Universität München$$b5$$kTUM
000276650 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000276650 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000276650 920__ $$lyes
000276650 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000276650 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000276650 980__ $$ajournal
000276650 980__ $$aVDB
000276650 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000276650 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000276650 980__ $$aUNRESTRICTED
000276650 981__ $$aI:(DE-Juel1)JCNS-2-20110106