000276650 001__ 276650 000276650 005__ 20210129220924.0 000276650 0247_ $$2doi$$a10.1039/C5TA05767A 000276650 0247_ $$2ISSN$$a2050-7488 000276650 0247_ $$2ISSN$$a2050-7496 000276650 0247_ $$2WOS$$aWOS:000363163200037 000276650 037__ $$aFZJ-2015-06978 000276650 082__ $$a540 000276650 1001_ $$0P:(DE-HGF)0$$aCeretti, M.$$b0$$eCorresponding author 000276650 245__ $$aLow temperature oxygen diffusion mechanisms in Nd $_{2}$ NiO $_{4+δ}$ and Pr $_{2}$ NiO $_{4+δ}$ via large anharmonic displacements, explored by single crystal neutron diffraction 000276650 260__ $$aLondon {[u.a.]$$bRSC$$c2015 000276650 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449670122_32511 000276650 3367_ $$2DataCite$$aOutput Types/Journal article 000276650 3367_ $$00$$2EndNote$$aJournal Article 000276650 3367_ $$2BibTeX$$aARTICLE 000276650 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000276650 3367_ $$2DRIVER$$aarticle 000276650 520__ $$aWe investigated the structure of Nd2NiO4+δ and Pr2NiO4+δ by single crystal neutron diffraction studies. While the real structure of both compounds is incommensurate, the scattering density of the respective average structures was explored using the Maximum Entropy Method. Unusually high displacement factors were found for the equatorial and apical oxygen atoms showing respectively large displacement amplitudes towards [001] and [110] with respect to the F-symmetry cell. The shifts of the apical oxygen atoms reach up to 1 Å from their average position, corresponding to a 25° tilt of the NiO6 octahedra. At 400 °C, i.e. slightly above the orthorhombic-tetragonal phase transition, the anharmonic apical oxygen displacements towards [110] in the commensurate tetragonal parent structure are strongly enhanced, showing a double-well potential and pointing towards the interstitial vacancy sites, creating a quasi continuous shallow energy diffusion pathway between apical and interstitial oxygen sites. These large displacement amplitudes are considered to be – at least partially – of dynamical origin, which is consistent with a phonon assisted diffusion mechanism, already activated at very moderate temperatures. 000276650 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0 000276650 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1 000276650 588__ $$aDataset connected to CrossRef 000276650 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0 000276650 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1 000276650 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x2 000276650 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0 000276650 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x0 000276650 693__ $$0EXP:(DE-MLZ)RESI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)RESI-20140101$$6EXP:(DE-MLZ)SR8b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eRESI: Thermal neutron single crystal diffractometer$$fSR8b$$x1 000276650 7001_ $$0P:(DE-HGF)0$$aWahyudi, O.$$b1 000276650 7001_ $$0P:(DE-HGF)0$$aCousson, A.$$b2 000276650 7001_ $$0P:(DE-HGF)0$$aVillesuzanne, A.$$b3 000276650 7001_ $$0P:(DE-Juel1)164297$$aMeven, M.$$b4$$ufzj 000276650 7001_ $$0P:(DE-Juel1)166245$$aPedersen, B.$$b5$$ufzj 000276650 7001_ $$0P:(DE-HGF)0$$aBassat, J. M.$$b6 000276650 7001_ $$0P:(DE-HGF)0$$aPaulus, W.$$b7 000276650 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/C5TA05767A$$gVol. 3, no. 42, p. 21140 - 21148$$n42$$p21140 - 21148$$tJournal of materials chemistry / A$$v3$$x2050-7496$$y2015 000276650 8564_ $$uhttp://pubs.rsc.org/en/content/articlehtml/2015/ta/c5ta05767a 000276650 8564_ $$uhttps://juser.fz-juelich.de/record/276650/files/meven_Low%20temperature%20oxygen%20diffusion%20mechanisms%20in.pdf$$yRestricted 000276650 8564_ $$uhttps://juser.fz-juelich.de/record/276650/files/meven_Low%20temperature%20oxygen%20diffusion%20mechanisms%20in.gif?subformat=icon$$xicon$$yRestricted 000276650 8564_ $$uhttps://juser.fz-juelich.de/record/276650/files/meven_Low%20temperature%20oxygen%20diffusion%20mechanisms%20in.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000276650 8564_ $$uhttps://juser.fz-juelich.de/record/276650/files/meven_Low%20temperature%20oxygen%20diffusion%20mechanisms%20in.jpg?subformat=icon-180$$xicon-180$$yRestricted 000276650 8564_ $$uhttps://juser.fz-juelich.de/record/276650/files/meven_Low%20temperature%20oxygen%20diffusion%20mechanisms%20in.jpg?subformat=icon-640$$xicon-640$$yRestricted 000276650 8564_ $$uhttps://juser.fz-juelich.de/record/276650/files/meven_Low%20temperature%20oxygen%20diffusion%20mechanisms%20in.pdf?subformat=pdfa$$xpdfa$$yRestricted 000276650 909CO $$ooai:juser.fz-juelich.de:276650$$pVDB$$pVDB:MLZ 000276650 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG 000276650 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000276650 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2014 000276650 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000276650 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000276650 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000276650 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000276650 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000276650 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000276650 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000276650 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM A : 2014 000276650 9141_ $$y2015 000276650 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern 000276650 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164297$$aRheinisch-Westfälische Technische Hochschule$$b4$$kRWTH 000276650 9101_ $$0I:(DE-588b)4597118-3$$6P:(DE-Juel1)164297$$aHeinz Maier-Leibnitz Zentrum$$b4$$kMLZ 000276650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164297$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000276650 9101_ $$0I:(DE-588b)4597118-3$$6P:(DE-Juel1)166245$$aHeinz Maier-Leibnitz Zentrum$$b5$$kMLZ 000276650 9101_ $$0I:(DE-588b)36241-4$$6P:(DE-Juel1)166245$$aTechnische Universität München$$b5$$kTUM 000276650 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0 000276650 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1 000276650 920__ $$lyes 000276650 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0 000276650 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1 000276650 980__ $$ajournal 000276650 980__ $$aVDB 000276650 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000276650 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000276650 980__ $$aUNRESTRICTED 000276650 981__ $$aI:(DE-Juel1)JCNS-2-20110106