Home > Workflow collections > Public records > Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet > print |
001 | 276651 | ||
005 | 20210129220925.0 | ||
024 | 7 | _ | |2 doi |a 10.1103/PhysRevX.5.041004 |
024 | 7 | _ | |2 Handle |a 2128/9507 |
024 | 7 | _ | |2 WOS |a WOS:000362489800001 |
024 | 7 | _ | |a altmetric:4611972 |2 altmetric |
037 | _ | _ | |a FZJ-2015-06979 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Bhobe, P. A. |b 0 |
245 | _ | _ | |a Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet |
260 | _ | _ | |a College Park, Md. |b APS |c 2015 |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1449124830_15369 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-to-ferromagnetic-metal transition at TC=180 K and transforms into a ferromagnetic insulator below TMI=95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above TC to TMI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+∶Cr3+ states in a 3∶1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0)∼3.5(kBTMI)∼35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d−electrons/Cr) and the half-metallic ferromagnetism in the t2g up-spin band favor a low-energy Peierls metal-insulator transition. |
536 | _ | _ | |0 G:(DE-HGF)POF3-142 |a 142 - Controlling Spin-Based Phenomena (POF3-142) |c POF3-142 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Kumar, A. |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Taguchi, M. |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Eguchi, R. |b 3 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Matsunami, M. |b 4 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Takata, Y. |b 5 |
700 | 1 | _ | |0 P:(DE-Juel1)157778 |a Nandy, Ashis Kumar |b 6 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Mahadevan, P. |b 7 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Sarma, D. D. |b 8 |
700 | 1 | _ | |0 P:(DE-Juel1)145527 |a Neroni, A. |b 9 |
700 | 1 | _ | |0 P:(DE-Juel1)130937 |a Şaşıoğlu, E. |b 10 |
700 | 1 | _ | |0 P:(DE-Juel1)130799 |a Ležaić, M. |b 11 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Oura, M. |b 12 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Senba, Y. |b 13 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Ohashi, H. |b 14 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Ishizaka, K. |b 15 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Okawa, M. |b 16 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Shin, S. |b 17 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Tamasaku, K. |b 18 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Kohmura, Y. |b 19 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Yabashi, M. |b 20 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Ishikawa, T. |b 21 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Hasegawa, K. |b 22 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Isobe, M. |b 23 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Ueda, Y. |b 24 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Chainani, A. |b 25 |e Corresponding author |
773 | _ | _ | |0 PERI:(DE-600)2622565-7 |a 10.1103/PhysRevX.5.041004 |g Vol. 5, no. 4, p. 041004 |n 4 |p 041004 |t Physical review / X |v 5 |x 2160-3308 |y 2015 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276651/files/PhysRevX.5.041004.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276651/files/PhysRevX.5.041004.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276651/files/PhysRevX.5.041004.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276651/files/PhysRevX.5.041004.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276651/files/PhysRevX.5.041004.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276651/files/PhysRevX.5.041004.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:276651 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)157778 |a Forschungszentrum Jülich GmbH |b 6 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)145527 |a Forschungszentrum Jülich GmbH |b 9 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)130937 |a Forschungszentrum Jülich GmbH |b 10 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)130799 |a Forschungszentrum Jülich GmbH |b 11 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-142 |1 G:(DE-HGF)POF3-140 |2 G:(DE-HGF)POF3-100 |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV X : 2014 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PHYS REV X : 2014 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
980 | 1 | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
981 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|