001     276653
005     20210129220925.0
024 7 _ |a 10.1021/jacs.5b08216
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a WOS:000362628300046
|2 WOS
024 7 _ |a altmetric:4609269
|2 altmetric
024 7 _ |a pmid:26374486
|2 pmid
037 _ _ |a FZJ-2015-06981
082 _ _ |a 540
100 1 _ |0 P:(DE-HGF)0
|a Yu, Runze
|b 0
|e Corresponding author
245 _ _ |a Melting of Pb Charge Glass and Simultaneous Pb–Cr Charge Transfer in PbCrO $_{3}$ as the Origin of Volume Collapse
260 _ _ |a Washington, DC
|b American Chemical Society
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449125310_16249
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. We report that the charge glass state is realized in a perovskite compound PbCrO3, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO3 has a valence state of Pb2+0.5Pb4+0.5Cr3+O3 with Pb2+–Pb4+ correlation length of three lattice-spacings at ambient condition. A pressure induced melting of charge glass and simultaneous Pb–Cr charge transfer causes an insulator to metal transition and ∼10% volume collapse.
536 _ _ |0 G:(DE-HGF)POF3-142
|a 142 - Controlling Spin-Based Phenomena (POF3-142)
|c POF3-142
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Hojo, Hajime
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Watanuki, Tetsu
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Mizumaki, Masaichiro
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Mizokawa, Takashi
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Oka, Kengo
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Kim, Hyunjeong
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Machida, Akihiko
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Sakaki, Kouji
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Nakamura, Yumiko
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Agui, Akane
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Mori, Daisuke
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Inaguma, Yoshiyuki
|b 12
700 1 _ |0 P:(DE-Juel1)130941
|a Schlipf, Martin
|b 13
700 1 _ |0 P:(DE-Juel1)130926
|a Rushchanskii, Konstantin
|b 14
|u fzj
700 1 _ |0 P:(DE-Juel1)130799
|a Ležaić, Marjana
|b 15
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Matsuda, Masaaki
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Ma, Jie
|b 17
700 1 _ |0 P:(DE-HGF)0
|a Calder, Stuart
|b 18
700 1 _ |0 P:(DE-HGF)0
|a Isobe, Masahiko
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Ikuhara, Yuichi
|b 20
700 1 _ |0 P:(DE-HGF)0
|a Azuma, Masaki
|b 21
773 _ _ |0 PERI:(DE-600)1472210-0
|a 10.1021/jacs.5b08216
|g Vol. 137, no. 39, p. 12719 - 12728
|n 39
|p 12719 - 12728
|t Journal of the American Chemical Society
|v 137
|x 1520-5126
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/276653/files/jacs.5b08216.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276653/files/jacs.5b08216.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276653/files/jacs.5b08216.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276653/files/jacs.5b08216.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276653/files/jacs.5b08216.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276653/files/jacs.5b08216.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:276653
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130926
|a Forschungszentrum Jülich GmbH
|b 14
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130799
|a Forschungszentrum Jülich GmbH
|b 15
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-142
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J AM CHEM SOC : 2014
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9910
|2 StatID
|a IF >= 10
|b J AM CHEM SOC : 2014
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21