000002769 001__ 2769 000002769 005__ 20180208204801.0 000002769 0247_ $$2DOI$$a10.1088/0953-8984/20/31/315011 000002769 0247_ $$2WOS$$aWOS:000257759600028 000002769 037__ $$aPreJuSER-2769 000002769 041__ $$aeng 000002769 082__ $$a530 000002769 084__ $$2WoS$$aPhysics, Condensed Matter 000002769 1001_ $$0P:(DE-Juel1)130885$$aPersson, B. N. J.$$b0$$uFZJ 000002769 245__ $$aTheory of the leak-rate of seals 000002769 260__ $$aBristol$$bIOP Publ.$$c2008 000002769 300__ $$a315011 000002769 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000002769 3367_ $$2DataCite$$aOutput Types/Journal article 000002769 3367_ $$00$$2EndNote$$aJournal Article 000002769 3367_ $$2BibTeX$$aARTICLE 000002769 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000002769 3367_ $$2DRIVER$$aarticle 000002769 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v20$$x0953-8984$$y31 000002769 500__ $$aRecord converted from VDB: 12.11.2012 000002769 520__ $$aSeals are extremely useful devices to prevent fluid leakage. However, the exact mechanism of roughness induced leakage is not well understood. We present a theory of the leak-rate of seals, which is based on percolation theory and a recently developed contact mechanics theory. We study both static and dynamic seals. We present molecular dynamics results which show that when two elastic solids with randomly rough surfaces are squeezed together, as a function of increasing magnification or decreasing squeezing pressure, a non-contact channel will percolate when the (relative) projected contact area, A/A(0), is of the order 0.4, in accordance with percolation theory. We suggest a simple experiment which can be used to test the theory. 000002769 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0 000002769 588__ $$aDataset connected to Web of Science 000002769 650_7 $$2WoSType$$aJ 000002769 7001_ $$0P:(DE-Juel1)VDB64577$$aYang, C.$$b1$$uFZJ 000002769 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/20/31/315011$$gVol. 20, p. 315011$$p315011$$q20<315011$$tJournal of physics / Condensed matter$$v20$$x0953-8984$$y2008 000002769 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/20/31/315011 000002769 909CO $$ooai:juser.fz-juelich.de:2769$$pVDB 000002769 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009 000002769 9141_ $$y2008 000002769 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000002769 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0 000002769 970__ $$aVDB:(DE-Juel1)107905 000002769 980__ $$aVDB 000002769 980__ $$aConvertedRecord 000002769 980__ $$ajournal 000002769 980__ $$aI:(DE-Juel1)PGI-1-20110106 000002769 980__ $$aUNRESTRICTED 000002769 981__ $$aI:(DE-Juel1)PGI-1-20110106