001     2771
005     20200423202427.0
024 7 _ |a pmid:18311474
|2 pmid
024 7 _ |a 10.1140/epje/i2007-10271-7
|2 DOI
024 7 _ |a WOS:000254406200003
|2 WOS
024 7 _ |a 2128/22944
|2 Handle
037 _ _ |a PreJuSER-2771
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Polymer Science
100 1 _ |a Yang, C.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB64577
245 _ _ |a Nanodroplets on rough hydrophilic and hydrophobic surfaces
260 _ _ |a Berlin
|b Springer
|c 2008
300 _ _ |a 139 - 152
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a European Physical Journal E
|x 1292-8941
|0 1985
|y 2
|v 25
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We present results of Molecular Dynamics (MD) calculations on the behavior of liquid nanodroplets on rough hydrophobic and hydrophilic solid surfaces. On hydrophobic surfaces, the contact angle for nanodroplets depends strongly on the root-mean-square roughness amplitude, but it is nearly independent of the fractal dimension of the surface. Since increasing the fractal dimension increases the short-wavelength roughness, while the long-wavelength roughness is almost unchanged, we conclude that for hydrophobic interactions the short-wavelength (atomistic) roughness is not very important. We show that the nanodroplet is in a Cassie-like state. For rough hydrophobic surfaces, there is no contact angle hysteresis due to strong thermal fluctuations, which occur at the liquid-solid interface on the nanoscale. On hydrophilic surfaces, however, there is strong contact angle hysteresis due to higher energy barrier. These findings may be very important for the development of artificially biomimetic superhydrophobic surfaces.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Biomimetics
650 _ 2 |2 MeSH
|a Biophysics: methods
650 _ 2 |2 MeSH
|a Computer Simulation
650 _ 2 |2 MeSH
|a Equipment Design
650 _ 2 |2 MeSH
|a Fractals
650 _ 2 |2 MeSH
|a Models, Statistical
650 _ 2 |2 MeSH
|a Models, Theoretical
650 _ 2 |2 MeSH
|a Nanoparticles: chemistry
650 _ 2 |2 MeSH
|a Nanotechnology: methods
650 _ 2 |2 MeSH
|a Probability
650 _ 2 |2 MeSH
|a Surface Properties
650 _ 2 |2 MeSH
|a Wettability
650 _ 7 |a J
|2 WoSType
700 1 _ |a Tartaglino, U.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Persson, B. N. J.
|b 2
|u FZJ
|0 P:(DE-Juel1)130885
773 _ _ |a 10.1140/epje/i2007-10271-7
|g Vol. 25, p. 139 - 152
|p 139 - 152
|q 25<139 - 152
|0 PERI:(DE-600)2004003-9
|t The @European physical journal / E
|v 25
|y 2008
|x 1292-8941
856 7 _ |u http://dx.doi.org/10.1140/epje/i2007-10271-7
856 4 _ |u https://juser.fz-juelich.de/record/2771/files/0710.3264.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/2771/files/0710.3264.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:2771
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2008
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |k IFF-1
|l Quanten-Theorie der Materialien
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB781
|x 0
970 _ _ |a VDB:(DE-Juel1)107907
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21