000002775 001__ 2775
000002775 005__ 20180208195322.0
000002775 0247_ $$2DOI$$a10.1088/0953-8984/20/39/395006
000002775 0247_ $$2WOS$$aWOS:000259034200007
000002775 037__ $$aPreJuSER-2775
000002775 041__ $$aeng
000002775 082__ $$a530
000002775 084__ $$2WoS$$aPhysics, Condensed Matter
000002775 1001_ $$0P:(DE-Juel1)130885$$aPersson, B. N. J.$$b0$$uFZJ
000002775 245__ $$aOn the origin of Amonton's friction law
000002775 260__ $$aBristol$$bIOP Publ.$$c2008
000002775 300__ $$a395006
000002775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000002775 3367_ $$2DataCite$$aOutput Types/Journal article
000002775 3367_ $$00$$2EndNote$$aJournal Article
000002775 3367_ $$2BibTeX$$aARTICLE
000002775 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000002775 3367_ $$2DRIVER$$aarticle
000002775 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v20$$x0953-8984$$y39
000002775 500__ $$aRecord converted from VDB: 12.11.2012
000002775 520__ $$aAmonton's law states that the sliding friction force increases linearly with the load. We show that this result is expected for stiff enough solids, even when the adhesional interaction between the solids is included in the analysis. As a function of the magnitude of the elastic modulus E, one can distinguish between three regions: (a) for E > E-2, the area of real contact (and the friction force) depends linearly on the load, (b) for E-1 < E < E-2, the area of real contact depends nonlinearly on the load but vanishes for zero load, and (c) for E < E-1 the area of real contact depends nonlinearly on the load and is non-vanishing at zero load. In this last case a finite pull-off force is necessary in order to separate the solids. Based on molecular dynamics calculations, we also discuss the pressure dependence of the frictional shear stress for polymers. We show that the frictional shear stress is independent of the normal pressure p(0) as long as p(0) is much smaller than the adhesional pressure p(ad), which depends on the atomic corrugation of the solid surfaces in the sliding interface. Finally, we discuss the origin of why the contact area between a soft elastic solid (e. g. rubber) and a flat substrate decreases from the JKR (adhesive contact) limit at zero or small sliding velocities, to the Hertz (non-adhesive) limit at high sliding velocities.
000002775 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000002775 588__ $$aDataset connected to Web of Science
000002775 650_7 $$2WoSType$$aJ
000002775 7001_ $$0P:(DE-HGF)0$$aSivebaek, I. M.$$b1
000002775 7001_ $$0P:(DE-HGF)0$$aSamoilov, V. N.$$b2
000002775 7001_ $$0P:(DE-HGF)0$$aZhao, K.$$b3
000002775 7001_ $$0P:(DE-HGF)0$$aVolokitin, A. I.$$b4
000002775 7001_ $$0P:(DE-HGF)0$$aZhang, Z.$$b5
000002775 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/20/39/395006$$gVol. 20, p. 395006$$p395006$$q20<395006$$tJournal of physics / Condensed matter$$v20$$x0953-8984$$y2008
000002775 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/20/39/395006
000002775 909CO $$ooai:juser.fz-juelich.de:2775$$pVDB
000002775 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000002775 9141_ $$y2008
000002775 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000002775 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0
000002775 970__ $$aVDB:(DE-Juel1)107911
000002775 980__ $$aVDB
000002775 980__ $$aConvertedRecord
000002775 980__ $$ajournal
000002775 980__ $$aI:(DE-Juel1)PGI-1-20110106
000002775 980__ $$aUNRESTRICTED
000002775 981__ $$aI:(DE-Juel1)PGI-1-20110106