001     2775
005     20180208195322.0
024 7 _ |2 DOI
|a 10.1088/0953-8984/20/39/395006
024 7 _ |2 WOS
|a WOS:000259034200007
037 _ _ |a PreJuSER-2775
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Persson, B. N. J.
|b 0
|u FZJ
|0 P:(DE-Juel1)130885
245 _ _ |a On the origin of Amonton's friction law
260 _ _ |a Bristol
|b IOP Publ.
|c 2008
300 _ _ |a 395006
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Physics: Condensed Matter
|x 0953-8984
|0 3703
|y 39
|v 20
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Amonton's law states that the sliding friction force increases linearly with the load. We show that this result is expected for stiff enough solids, even when the adhesional interaction between the solids is included in the analysis. As a function of the magnitude of the elastic modulus E, one can distinguish between three regions: (a) for E > E-2, the area of real contact (and the friction force) depends linearly on the load, (b) for E-1 < E < E-2, the area of real contact depends nonlinearly on the load but vanishes for zero load, and (c) for E < E-1 the area of real contact depends nonlinearly on the load and is non-vanishing at zero load. In this last case a finite pull-off force is necessary in order to separate the solids. Based on molecular dynamics calculations, we also discuss the pressure dependence of the frictional shear stress for polymers. We show that the frictional shear stress is independent of the normal pressure p(0) as long as p(0) is much smaller than the adhesional pressure p(ad), which depends on the atomic corrugation of the solid surfaces in the sliding interface. Finally, we discuss the origin of why the contact area between a soft elastic solid (e. g. rubber) and a flat substrate decreases from the JKR (adhesive contact) limit at zero or small sliding velocities, to the Hertz (non-adhesive) limit at high sliding velocities.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Sivebaek, I. M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Samoilov, V. N.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Zhao, K.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Volokitin, A. I.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Zhang, Z.
|b 5
|0 P:(DE-HGF)0
773 _ _ |a 10.1088/0953-8984/20/39/395006
|g Vol. 20, p. 395006
|p 395006
|q 20<395006
|0 PERI:(DE-600)1472968-4
|t Journal of physics / Condensed matter
|v 20
|y 2008
|x 0953-8984
856 7 _ |u http://dx.doi.org/10.1088/0953-8984/20/39/395006
909 C O |o oai:juser.fz-juelich.de:2775
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-1
|l Quanten-Theorie der Materialien
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB781
|x 0
970 _ _ |a VDB:(DE-Juel1)107911
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21