000002782 001__ 2782
000002782 005__ 20180208203659.0
000002782 0247_ $$2DOI$$a10.1088/0953-8984/20/22/224016
000002782 0247_ $$2WOS$$aWOS:000256145700019
000002782 037__ $$aPreJuSER-2782
000002782 041__ $$aeng
000002782 082__ $$a530
000002782 084__ $$2WoS$$aPhysics, Condensed Matter
000002782 1001_ $$0P:(DE-HGF)0$$aUeba, H.$$b0
000002782 245__ $$aHeat transfer between adsorbate and laser-heated hot electrons
000002782 260__ $$aBristol$$bIOP Publ.$$c2008
000002782 300__ $$a224016
000002782 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000002782 3367_ $$2DataCite$$aOutput Types/Journal article
000002782 3367_ $$00$$2EndNote$$aJournal Article
000002782 3367_ $$2BibTeX$$aARTICLE
000002782 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000002782 3367_ $$2DRIVER$$aarticle
000002782 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v20$$x0953-8984$$y22
000002782 500__ $$aRecord converted from VDB: 12.11.2012
000002782 520__ $$aStrong short laser pulses can give rise to a strong increase in the electronic temperature at metal surfaces. Energy transfer from the hot electrons to adsorbed molecules may result in adsorbate reactions, e. g. desorption or diffusion. We point out the limitations of an often used equation to describe the heat transfer process in terms of a friction coupling. We propose a simple theory for the energy transfer between the adsorbate and hot electrons using a newly introduced heat transfer coefficient, which depends on the adsorbate temperature. We calculate the transient adsorbate temperature and the reaction yield for a Morse potential as a function of the laser fluency. The results are compared to those obtained using a conventional heat transfer equation with temperature-independent friction. It is found that our equation of energy ( heat) transfer gives a significantly lower adsorbate peak temperature, which results in a large modification of the reaction yield. We also consider the heat transfer between different vibrational modes excited by hot electrons. This mode coupling provides indirect heating of the vibrational temperature in addition to the direct heating by hot electrons. The formula of heat transfer through linear mode-mode coupling of two harmonic oscillators is applied to the recent time-resolved study of carbon monoxide and atomic oxygen hopping on an ultrafast laser-heated Pt(111) surface. It is found that the maximum temperature of the frustrated translation mode can reach high temperatures for hopping, even when direct friction coupling to the hot electrons is not strong enough.
000002782 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000002782 588__ $$aDataset connected to Web of Science
000002782 650_7 $$2WoSType$$aJ
000002782 7001_ $$0P:(DE-Juel1)130885$$aPersson, B. N. J.$$b1$$uFZJ
000002782 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/20/22/224016$$gVol. 20, p. 224016$$p224016$$q20<224016$$tJournal of physics / Condensed matter$$v20$$x0953-8984$$y2008
000002782 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/20/22/224016
000002782 909CO $$ooai:juser.fz-juelich.de:2782$$pVDB
000002782 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000002782 9141_ $$y2008
000002782 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000002782 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0
000002782 970__ $$aVDB:(DE-Juel1)107922
000002782 980__ $$aVDB
000002782 980__ $$aConvertedRecord
000002782 980__ $$ajournal
000002782 980__ $$aI:(DE-Juel1)PGI-1-20110106
000002782 980__ $$aUNRESTRICTED
000002782 981__ $$aI:(DE-Juel1)PGI-1-20110106