000278659 001__ 278659
000278659 005__ 20210129220926.0
000278659 0247_ $$2doi$$a10.1088/0022-3727/48/50/504004
000278659 0247_ $$2ISSN$$a0022-3727
000278659 0247_ $$2ISSN$$a0262-8171
000278659 0247_ $$2ISSN$$a0508-3443
000278659 0247_ $$2ISSN$$a1361-6463
000278659 0247_ $$2Handle$$a2128/9712
000278659 0247_ $$2WOS$$aWOS:000368443100006
000278659 037__ $$aFZJ-2015-06984
000278659 041__ $$aEnglish
000278659 082__ $$a530
000278659 1001_ $$0P:(DE-HGF)0$$aMaity, A.$$b0$$eCorresponding author
000278659 245__ $$aSolid-state reactivity explored in situ by synchrotron radiation on single crystals: from SrFeO 2.5 to SrFeO 3 via electrochemical oxygen intercalation
000278659 260__ $$aBristol$$bIOP Publ.$$c2015
000278659 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1457096890_14709
000278659 3367_ $$2DataCite$$aOutput Types/Journal article
000278659 3367_ $$00$$2EndNote$$aJournal Article
000278659 3367_ $$2BibTeX$$aARTICLE
000278659 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278659 3367_ $$2DRIVER$$aarticle
000278659 500__ $$a"final draft post referee" wird nicht zur Verfügung gestellt.
000278659 520__ $$aIn this study we demonstrate the feasibility of following up a chemical reaction by single crystal x-ray (synchrotron) diffraction under operando conditions, carried out in a specially designed electrochemical cell mounted on the BM01A at the European Synchrotron Radiation Facility (ESRF). We investigated in detail the electrochemical oxidation of SrFeO2.5 to SrFeO3 on a spherical single crystal of 70 μm diameter by in situ diffraction at an ambient temperature. Complete data sets were obtained by scanning the whole reciprocal space using a 2M Pilatus detector, resulting in 3600 frames with a resolution of 0.1° per data set, each obtained in 18 min. The crystal was mounted in a specially designed electrochemical cell with 1N KOH used as the electrolyte. During the electrochemical oxidation, the reaction proceeds following the phase sequence SrFeO2.5/SrFeO2.75/SrFeO2.875/SrFeO3, structurally accompanied by establishing a complex series of long-range oxygen vacancy ordering, which gets instantly organized at ambient temperature. The topotactic reaction pathway is discussed in terms of the evolution of the twin domain structure. The formation of SrFeO2.875 is accompanied by the formation of diffuse streaks along the [1 0 0]-direction of the perovskite cell, reaching high d-spacings. The diffuse streaks are discussed and are thought to originate from a modified twin structure induced by the SrFeO2.75 to SrFeO2.875 transition, and the associated changes in the domain structure, developed during the oxygen intercalation. We equally analysed and discussed in detail the twin structure of all the title compounds. We confirm the ground state of SrFeO2.5 is able to adopt the Imma space group symmetry, showing stacking faults of the tetrahedral layers along the stacking axis of the brownmillerite unit cell, indicated by the 1D diffuse rods. We showed that in situ single crystal diffraction has huge potential in the study of nonstoichiometric compounds under operando conditions, in order to obtain structural information i.e. about diffuse scattering, and microstructural information related to domain effects such as twinning—information far beyond that which powder diffraction methods allow us to obtain.
000278659 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000278659 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000278659 588__ $$aDataset connected to CrossRef
000278659 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000278659 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x1
000278659 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000278659 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000278659 7001_ $$0P:(DE-HGF)0$$aDutta, R.$$b1
000278659 7001_ $$0P:(DE-HGF)0$$aPenkala, B.$$b2
000278659 7001_ $$0P:(DE-HGF)0$$aCeretti, M.$$b3
000278659 7001_ $$0P:(DE-HGF)0$$aLetrouit-Lebranchu, A.$$b4
000278659 7001_ $$0P:(DE-HGF)0$$aChernyshov, D.$$b5
000278659 7001_ $$0P:(DE-HGF)0$$aPerichon, A.$$b6
000278659 7001_ $$0P:(DE-HGF)0$$aPiovano, A.$$b7
000278659 7001_ $$0P:(DE-HGF)0$$aBossak, A.$$b8
000278659 7001_ $$0P:(DE-Juel1)164297$$aMeven, Martin$$b9
000278659 7001_ $$0P:(DE-HGF)0$$aPaulus, W.$$b10$$eCorresponding author
000278659 773__ $$0PERI:(DE-600)1472948-9$$a10.1088/0022-3727/48/50/504004$$gVol. 48, no. 50, p. 504004 -$$n50$$p504004 -$$tJournal of physics / D$$v48$$x1361-6463$$y2015
000278659 8564_ $$uhttps://juser.fz-juelich.de/record/278659/files/pdf.pdf$$yOpenAccess
000278659 8564_ $$uhttps://juser.fz-juelich.de/record/278659/files/pdf.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000278659 909CO $$ooai:juser.fz-juelich.de:278659$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$pVDB:MLZ$$popenaire
000278659 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000278659 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000278659 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS D APPL PHYS : 2014
000278659 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000278659 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000278659 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000278659 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000278659 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000278659 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000278659 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000278659 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000278659 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000278659 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000278659 9141_ $$y2015
000278659 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164297$$aRheinisch-Westfälische Technische Hochschule$$b9$$kRWTH
000278659 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164297$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000278659 9101_ $$0I:(DE-588b)4597118-3$$6P:(DE-Juel1)164297$$aHeinz Maier-Leibnitz Zentrum$$b9$$kMLZ
000278659 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000278659 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000278659 920__ $$lyes
000278659 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000278659 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000278659 980__ $$ajournal
000278659 980__ $$aVDB
000278659 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000278659 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000278659 980__ $$aUNRESTRICTED
000278659 9801_ $$aUNRESTRICTED
000278659 9801_ $$aFullTexts
000278659 981__ $$aI:(DE-Juel1)JCNS-2-20110106