000278669 001__ 278669
000278669 005__ 20240712100948.0
000278669 0247_ $$2doi$$a10.5194/acpd-15-27627-2015
000278669 0247_ $$2ISSN$$a1680-7367
000278669 0247_ $$2ISSN$$a1680-7375
000278669 0247_ $$2Handle$$a2128/9502
000278669 0247_ $$2altmetric$$aaltmetric:4678868
000278669 037__ $$aFZJ-2015-06994
000278669 082__ $$a550
000278669 1001_ $$0P:(DE-HGF)0$$aSchallhart, S.$$b0$$eCorresponding author
000278669 245__ $$aCharacterization of total ecosystem scale biogenic VOC exchange at a Mediterranean oak-hornbeam forest
000278669 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000278669 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449123690_16093
000278669 3367_ $$2DataCite$$aOutput Types/Journal article
000278669 3367_ $$00$$2EndNote$$aJournal Article
000278669 3367_ $$2BibTeX$$aARTICLE
000278669 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278669 3367_ $$2DRIVER$$aarticle
000278669 520__ $$aRecently, the number and amount of biogenically emitted volatile organic compounds (VOCs) has been discussed vigorously. Depending on the ecosystem the published number varies between a dozen and several hundred compounds. We present ecosystem exchange fluxes from a mixed oak-hornbeam forest in the Po Valley, Italy. The fluxes were measured by a proton transfer reaction-time-of-flight (PTR-ToF) mass spectrometer and calculated by the eddy covariance (EC) method. Detectable fluxes were observed for twelve compounds, dominated by isoprene, which comprised over 65 % of the total flux emission. The daily average of the total VOC emission was 9.5 nmol m-2 s-1. Methanol had the highest concentration and accounted for the largest deposition. Methanol seemed to be deposited to dew, as the deposition happened in the early morning, right after the calculated surface temperature came closest to the calculated dew point temperature.We estimated that up to 27 % of the upward flux of methyl vinyl ketone (MVK) and methacrolein (MACR) originated from atmospheric oxidation of isoprene. A comparison between two flux detection methods (classical/visual and automated) was made. Their respective advantages and disadvantages were discussed and the differences in their results shown. Both provide comparable results; however we recommend the automated method with a compound filter, which combines the fast analysis and better flux detection, without the overestimation due to double counting.
000278669 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000278669 588__ $$aDataset connected to CrossRef
000278669 7001_ $$0P:(DE-HGF)0$$aRantala, P.$$b1
000278669 7001_ $$0P:(DE-HGF)0$$aNemitz, E.$$b2
000278669 7001_ $$0P:(DE-HGF)0$$aMogensen, D.$$b3
000278669 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b4$$ufzj
000278669 7001_ $$0P:(DE-Juel1)16346$$aMentel, T. F.$$b5$$ufzj
000278669 7001_ $$0P:(DE-HGF)0$$aRinne, J.$$b6
000278669 7001_ $$0P:(DE-HGF)0$$aRuuskanen, T. M.$$b7
000278669 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acpd-15-27627-2015$$gVol. 15, no. 19, p. 27627 - 27673$$n19$$p27627 - 27673$$tAtmospheric chemistry and physics / Discussions$$v15$$x1680-7375$$y2015
000278669 8564_ $$uhttps://juser.fz-juelich.de/record/278669/files/acpd-15-27627-2015.pdf$$yOpenAccess
000278669 8564_ $$uhttps://juser.fz-juelich.de/record/278669/files/acpd-15-27627-2015.gif?subformat=icon$$xicon$$yOpenAccess
000278669 8564_ $$uhttps://juser.fz-juelich.de/record/278669/files/acpd-15-27627-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000278669 8564_ $$uhttps://juser.fz-juelich.de/record/278669/files/acpd-15-27627-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000278669 8564_ $$uhttps://juser.fz-juelich.de/record/278669/files/acpd-15-27627-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000278669 8564_ $$uhttps://juser.fz-juelich.de/record/278669/files/acpd-15-27627-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000278669 909CO $$ooai:juser.fz-juelich.de:278669$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000278669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000278669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000278669 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000278669 9141_ $$y2015
000278669 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000278669 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000278669 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000278669 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000278669 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000278669 920__ $$lyes
000278669 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000278669 9801_ $$aUNRESTRICTED
000278669 9801_ $$aFullTexts
000278669 980__ $$ajournal
000278669 980__ $$aVDB
000278669 980__ $$aUNRESTRICTED
000278669 980__ $$aI:(DE-Juel1)IEK-8-20101013
000278669 981__ $$aI:(DE-Juel1)ICE-3-20101013