000278670 001__ 278670 000278670 005__ 20240712100948.0 000278670 0247_ $$2doi$$a10.5194/acpd-15-19903-2015 000278670 0247_ $$2ISSN$$a1680-7367 000278670 0247_ $$2ISSN$$a1680-7375 000278670 0247_ $$2Handle$$a2128/9503 000278670 037__ $$aFZJ-2015-06995 000278670 082__ $$a550 000278670 1001_ $$0P:(DE-Juel1)136801$$aZhao, Defeng$$b0 000278670 245__ $$aCloud condensation nuclei activity, droplet growth kinetics and hygroscopicity of biogenic and anthropogenic Secondary Organic Aerosol (SOA) 000278670 260__ $$aKatlenburg-Lindau$$bEGU$$c2015 000278670 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449123804_16686 000278670 3367_ $$2DataCite$$aOutput Types/Journal article 000278670 3367_ $$00$$2EndNote$$aJournal Article 000278670 3367_ $$2BibTeX$$aARTICLE 000278670 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000278670 3367_ $$2DRIVER$$aarticle 000278670 520__ $$aInteraction of biogenic volatile organic compounds (VOC) with anthropogenic VOC affects the physicochemical properties of secondary organic aerosol (SOA). We investigated cloud droplet activation (CCN activity), droplet growth kinetics, and hygroscopicity of mixed anthropogenic and biogenic SOA (ABSOA) compared to pure biogenic SOA (BSOA) and pure anthropogenic SOA (ASOA). Selected monoterpenes and aromatics were used as representative precursors of BSOA and ASOA, respectively.We found that BSOA, ASOA, and ABSOA had similar CCN activity despite the higher oxygen to carbon ratio (O/C) of ASOA compared to BSOA and ABSOA. For individual reaction systems, CCN activity increased with the degree of oxidation. Yet, when considering all different types of SOA together, the hygroscopicity parameter, κCCN, did not correlate with O/C. Droplet growth kinetics of BSOA, ASOA, and ABSOA was comparable to that of (NH4)2SO4, which indicates that there was no delay in the water uptake for these SOA in supersaturated conditions.In contrast to CCN activity, the hygroscopicity parameter from hygroscopic tandem differential mobility analyzer (HTDMA) measurement, κHTDMA, of ASOA was distinctively higher (0.09–0.10) than that of BSOA (0.03–0.06), which was attributed to the higher degree of oxidation of ASOA. The ASOA components in mixed ABSOA enhanced aerosol hygroscopicity. Changing the ASOA fraction by adding BVOC to ASOA or vice versa AVOC to BSOA changed the hygroscopicity of aerosol, in line with the change in the degree of oxidation of aerosol. However, the hygroscopicity of ABSOA cannot be described by a simple linear combination of pure BSOA and ASOA systems. This indicates that additional processes, possibly oligomerization, affected the hygroscopicity.Closure analysis of CCN and HTDMA data showed κHTDMA was lower than κCCN by 30–70 %. Better closure was achieved for ASOA compared to BSOA. This discrepancy can be attributed to several reasons. ASOA seemed to have higher solubility in subsaturated conditions and/or higher surface tension at the activation point than that of BSOA. 000278670 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0 000278670 588__ $$aDataset connected to CrossRef 000278670 7001_ $$0P:(DE-Juel1)7151$$aBuchholz, A.$$b1 000278670 7001_ $$0P:(DE-HGF)0$$aKortner, B.$$b2 000278670 7001_ $$0P:(DE-Juel1)4548$$aSchlag, Patrick$$b3 000278670 7001_ $$0P:(DE-Juel1)8554$$aRubach, Florian$$b4 000278670 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b5 000278670 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, A.$$b6 000278670 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b7 000278670 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b8 000278670 7001_ $$0P:(DE-HGF)0$$aWatne, Å. K.$$b9 000278670 7001_ $$0P:(DE-HGF)0$$aHallquist, M.$$b10 000278670 7001_ $$0P:(DE-HGF)0$$aFlores, J. M.$$b11 000278670 7001_ $$0P:(DE-HGF)0$$aRudich, Y.$$b12 000278670 7001_ $$0P:(DE-HGF)0$$aKristensen, K.$$b13 000278670 7001_ $$0P:(DE-HGF)0$$aHansen, A. M. K.$$b14 000278670 7001_ $$0P:(DE-HGF)0$$aGlasius, M.$$b15 000278670 7001_ $$0P:(DE-HGF)0$$aKourtchev, I.$$b16 000278670 7001_ $$0P:(DE-HGF)0$$aKalberer, M.$$b17 000278670 7001_ $$0P:(DE-Juel1)16346$$aMentel, Th. F.$$b18$$eCorresponding author 000278670 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acpd-15-19903-2015$$gVol. 15, no. 14, p. 19903 - 19945$$n14$$p19903 - 19945$$tAtmospheric chemistry and physics / Discussions$$v15$$x1680-7375$$y2015 000278670 8564_ $$uhttps://juser.fz-juelich.de/record/278670/files/acpd-15-19903-2015.pdf$$yOpenAccess 000278670 8564_ $$uhttps://juser.fz-juelich.de/record/278670/files/acpd-15-19903-2015.gif?subformat=icon$$xicon$$yOpenAccess 000278670 8564_ $$uhttps://juser.fz-juelich.de/record/278670/files/acpd-15-19903-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000278670 8564_ $$uhttps://juser.fz-juelich.de/record/278670/files/acpd-15-19903-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000278670 8564_ $$uhttps://juser.fz-juelich.de/record/278670/files/acpd-15-19903-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000278670 8564_ $$uhttps://juser.fz-juelich.de/record/278670/files/acpd-15-19903-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000278670 8767_ $$92015-10-09$$d2015-10-09$$eAPC$$jZahlung erfolgt 000278670 909CO $$ooai:juser.fz-juelich.de:278670$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000278670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136801$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000278670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7151$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000278670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000278670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4548$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000278670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000278670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000278670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich GmbH$$b7$$kFZJ 000278670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich GmbH$$b8$$kFZJ 000278670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich GmbH$$b18$$kFZJ 000278670 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0 000278670 9141_ $$y2015 000278670 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000278670 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000278670 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000278670 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000278670 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000278670 920__ $$lyes 000278670 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0 000278670 9801_ $$aUNRESTRICTED 000278670 9801_ $$aFullTexts 000278670 980__ $$ajournal 000278670 980__ $$aVDB 000278670 980__ $$aUNRESTRICTED 000278670 980__ $$aI:(DE-Juel1)IEK-8-20101013 000278670 980__ $$aAPC 000278670 981__ $$aI:(DE-Juel1)ICE-3-20101013