000278675 001__ 278675
000278675 005__ 20240712100847.0
000278675 0247_ $$2doi$$a10.5194/acpd-15-33731-2015
000278675 0247_ $$2Handle$$a2128/9505
000278675 037__ $$aFZJ-2015-07000
000278675 082__ $$a550
000278675 1001_ $$0P:(DE-Juel1)129168$$aWegner, Tobias$$b0$$eCorresponding author
000278675 245__ $$aVortex-wide chlorine activation by a mesosclae PSC event in the Arctic winter of 2009/10
000278675 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000278675 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449124521_15333
000278675 3367_ $$2DataCite$$aOutput Types/Journal article
000278675 3367_ $$00$$2EndNote$$aJournal Article
000278675 3367_ $$2BibTeX$$aARTICLE
000278675 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278675 3367_ $$2DRIVER$$aarticle
000278675 520__ $$aIn the Arctic polar vortex of the 2009/10 winter temperatures were low enough to allow widespread formation of Polar Stratospheric Clouds (PSC). These clouds occurred during the initial chlorine activation phase which provided the opportunity to investigate the impact of PSCs on chlorine activation. Satellite observations of gas-phase species and PSCs are used in combination with trajectory modeling to assess this initial activation. The initial activation occurred in association with the formation of PSCs over the east coast of Greenland at the beginning of January 2010. Although this area of PSCs covered only a small portion of the vortex, it was responsible for almost the entire initial activation of chlorine vortex wide. Observations show HCl mixing ratios decreased rapidly in and downstream of this region. Trajectory calculations and simplified heterogeneous chemistry modeling confirmed that the initial chlorine activation continued until ClONO2 was completely depleted and the activated air masses were advected throughout the polar vortex. For the calculation of heterogeneous reaction rates, surface area density is estimated from backscatter observations. Modeled heterogeneous reaction rates along trajectories intersecting with the PSC indicate that the initial phase of chlorine activation occurred in just a few hours. These calculations also indicate that chlorine activation on the binary background aerosol is significantly slower than on the PSCs and the observed chlorine activation can only be explained by an increase in surface area density due to PSCs. Furthermore, there is a strong correlation between the magnitude of the observed HCl depletion and PSC surface area.
000278675 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000278675 7001_ $$0P:(DE-HGF)0$$aPitts, M. C.$$b1
000278675 7001_ $$0P:(DE-HGF)0$$aPoole, L. R.$$b2
000278675 7001_ $$0P:(DE-Juel1)159462$$aTritscher, Ines$$b3$$ufzj
000278675 7001_ $$0P:(DE-Juel1)129122$$aGrooss, Jens-Uwe$$b4$$ufzj
000278675 7001_ $$0P:(DE-HGF)0$$aNakajima, H.$$b5
000278675 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acpd-15-33731-2015$$p33731-33754$$tAtmospheric chemistry and physics / Discussions$$v15$$x1680-7367$$y2015
000278675 8564_ $$uhttps://juser.fz-juelich.de/record/278675/files/acpd-15-33731-2015.pdf$$yOpenAccess
000278675 8564_ $$uhttps://juser.fz-juelich.de/record/278675/files/acpd-15-33731-2015.gif?subformat=icon$$xicon$$yOpenAccess
000278675 8564_ $$uhttps://juser.fz-juelich.de/record/278675/files/acpd-15-33731-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000278675 8564_ $$uhttps://juser.fz-juelich.de/record/278675/files/acpd-15-33731-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000278675 8564_ $$uhttps://juser.fz-juelich.de/record/278675/files/acpd-15-33731-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000278675 8564_ $$uhttps://juser.fz-juelich.de/record/278675/files/acpd-15-33731-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000278675 909CO $$ooai:juser.fz-juelich.de:278675$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000278675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159462$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000278675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000278675 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000278675 9141_ $$y2015
000278675 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000278675 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000278675 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000278675 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000278675 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000278675 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000278675 9801_ $$aUNRESTRICTED
000278675 9801_ $$aFullTexts
000278675 980__ $$ajournal
000278675 980__ $$aVDB
000278675 980__ $$aUNRESTRICTED
000278675 980__ $$aI:(DE-Juel1)IEK-7-20101013
000278675 981__ $$aI:(DE-Juel1)ICE-4-20101013