000278745 001__ 278745
000278745 005__ 20240619091605.0
000278745 0247_ $$2doi$$a10.1021/acsmacrolett.5b00197
000278745 0247_ $$2Handle$$a2128/9562
000278745 0247_ $$2WOS$$aWOS:000356757800011
000278745 037__ $$aFZJ-2015-07012
000278745 082__ $$a540
000278745 1001_ $$0P:(DE-Juel1)141611$$aZinn, Thomas$$b0
000278745 245__ $$aEffect of Core Crystallization and Conformational Entropy on the Molecular Exchange Kinetics of Polymeric Micelles
000278745 260__ $$aWashington, DC$$bACS$$c2015
000278745 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1457698223_317
000278745 3367_ $$2DataCite$$aOutput Types/Journal article
000278745 3367_ $$00$$2EndNote$$aJournal Article
000278745 3367_ $$2BibTeX$$aARTICLE
000278745 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278745 3367_ $$2DRIVER$$aarticle
000278745 520__ $$aHere we systematically study the equilibrium molecular exchange kinetics of a series of amphiphilic n-alkyl-poly(ethylene oxide) (Cn-PEO) micelles containing partly crystallized cores. Using differential scanning calorimetry (DSC), we determined the melting transition and extracted the enthalpy of fusion, ΔHfus, of the n-alkyl chains inside the micellar core. Molecular exchange kinetics was measured below the melting point using a time-resolved small-angle neutron scattering technique (TR-SANS) based on mixing deuterated and proteated but otherwise identical micelles. Comparing both kinetic and thermodynamic data, we find that crystallinity within the micellar cores leads to significant enthalpic and the entropic contributions to the activation barrier for molecular exchange. While the former leads to an enhanced stability, the positive entropic gain favors the process. Interestingly, the entropic term contains an excess term beyond what is expected from the measured entropy of fusion. Based on calculations using the Rotational Isomeric State (RIS) model, we suggest that the excess entropy is due to the gain in conformational entropy upon releasing the chain from the confined state in the core. The study thus provides deep insight into the fundamental processes of micellar kinetics and which might be relevant also to other semicrystalline soft matter and biological systems including lipid membranes.
000278745 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0
000278745 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000278745 588__ $$aDataset connected to CrossRef
000278745 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000278745 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x1
000278745 65017 $$0V:(DE-MLZ)GC-130-1$$2V:(DE-HGF)$$aHealth and Life$$x0
000278745 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000278745 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x1
000278745 7001_ $$0P:(DE-Juel1)131036$$aWillner, Lutz$$b1$$ufzj
000278745 7001_ $$0P:(DE-Juel1)130893$$aPipich, Vitaliy$$b2$$ufzj
000278745 7001_ $$0P:(DE-Juel1)130917$$aRichter, Dieter$$b3$$ufzj
000278745 7001_ $$0P:(DE-HGF)0$$aLund, Reidar$$b4$$eCorresponding author
000278745 773__ $$0PERI:(DE-600)2644375-2$$a10.1021/acsmacrolett.5b00197$$gVol. 4, no. 6, p. 651 - 655$$n6$$p651 - 655$$tACS Macro Letters$$v4$$x2161-1653$$y2015
000278745 8564_ $$uhttps://juser.fz-juelich.de/record/278745/files/pipich_Effect%20of%20Core%20Crystallization%20and%20Conformational_Kin_cryst_March_2015-short_revised.pdf$$yOpenAccess
000278745 8564_ $$uhttps://juser.fz-juelich.de/record/278745/files/pipich_Effect%20of%20Core%20Crystallization%20and%20Conformational_Kin_cryst_March_2015-short_revised.gif?subformat=icon$$xicon$$yOpenAccess
000278745 8564_ $$uhttps://juser.fz-juelich.de/record/278745/files/pipich_Effect%20of%20Core%20Crystallization%20and%20Conformational_Kin_cryst_March_2015-short_revised.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000278745 8564_ $$uhttps://juser.fz-juelich.de/record/278745/files/pipich_Effect%20of%20Core%20Crystallization%20and%20Conformational_Kin_cryst_March_2015-short_revised.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000278745 8564_ $$uhttps://juser.fz-juelich.de/record/278745/files/pipich_Effect%20of%20Core%20Crystallization%20and%20Conformational_Kin_cryst_March_2015-short_revised.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000278745 8564_ $$uhttps://juser.fz-juelich.de/record/278745/files/pipich_Effect%20of%20Core%20Crystallization%20and%20Conformational_Kin_cryst_March_2015-short_revised.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000278745 909CO $$ooai:juser.fz-juelich.de:278745$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$pVDB:MLZ$$popenaire
000278745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131036$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000278745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000278745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130917$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000278745 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000278745 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000278745 9141_ $$y2015
000278745 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000278745 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS MACRO LETT : 2014
000278745 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS MACRO LETT : 2014
000278745 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000278745 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000278745 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000278745 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000278745 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000278745 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000278745 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000278745 920__ $$lyes
000278745 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x0
000278745 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x1
000278745 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung $$x2
000278745 9801_ $$aUNRESTRICTED
000278745 9801_ $$aFullTexts
000278745 980__ $$ajournal
000278745 980__ $$aVDB
000278745 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000278745 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000278745 980__ $$aI:(DE-Juel1)ICS-1-20110106
000278745 980__ $$aUNRESTRICTED
000278745 981__ $$aI:(DE-Juel1)IBI-8-20200312
000278745 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000278745 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000278745 981__ $$aI:(DE-Juel1)ICS-1-20110106