000278799 001__ 278799
000278799 005__ 20240712084459.0
000278799 0247_ $$2doi$$a10.1016/j.solmat.2015.07.033
000278799 0247_ $$2ISSN$$a0927-0248
000278799 0247_ $$2ISSN$$a1879-3398
000278799 0247_ $$2WOS$$aWOS:000367772200009
000278799 0247_ $$2altmetric$$aaltmetric:4838269
000278799 037__ $$aFZJ-2015-07033
000278799 082__ $$a530
000278799 1001_ $$0P:(DE-Juel1)156469$$aUrbain, Felix$$b0$$eCorresponding author$$ufzj
000278799 245__ $$aLight-induced degradation of adapted quadruple junction thin film silicon solar cells for photoelectrochemical water splitting
000278799 260__ $$aAmsterdam$$bNorth Holland$$c2016
000278799 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449157411_28392
000278799 3367_ $$2DataCite$$aOutput Types/Journal article
000278799 3367_ $$00$$2EndNote$$aJournal Article
000278799 3367_ $$2BibTeX$$aARTICLE
000278799 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278799 3367_ $$2DRIVER$$aarticle
000278799 520__ $$aThe fabrication process of high performance quadruple junction thin film silicon solar cells is described and the application of the solar cells in an integrated photoelectrochemical water splitting device is demonstrated. It is shown that the performance of solar cells can be adjusted by varying the process parameters and the thickness of the absorber layers of the individual sub cells and by integrating microcrystalline silicon oxide as intermediate reflecting layers. Thereby current matching of the sub cells was improved and a high open-circuit voltage of 2.8 V was achieved. Furthermore, the solar cell stability against light-induced degradation was investigated. Efficiencies of 13.2% (initial) and 12.6% (after 1000 h of light-soaking) were achieved. Bias-free water splitting with a solar-to-hydrogen efficiency of 7.8% was demonstrated in an integrated photovoltaic–electrochemical device using the developed quadruple junction photocathode. Finally, it is shown that in the case of quadruple junction solar cells the light-induced degradation has a lower effect on the photovoltaic–electrochemical efficiency as on the photovoltaic efficiency.
000278799 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000278799 536__ $$0G:(DE-HGF)POF3-126$$a126 - Solar Fuels (POF3-126)$$cPOF3-126$$fPOF III$$x1
000278799 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000278799 588__ $$aDataset connected to CrossRef
000278799 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, Vladimir$$b1$$ufzj
000278799 7001_ $$0P:(DE-Juel1)142337$$aBecker, Jan Philipp$$b2$$ufzj
000278799 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b3$$ufzj
000278799 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b4$$ufzj
000278799 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b5$$ufzj
000278799 773__ $$0PERI:(DE-600)2012677-3$$a10.1016/j.solmat.2015.07.033$$gVol. 145, p. 142 - 147$$n2$$p142 - 147$$tSolar energy materials & solar cells$$v145$$x0927-0248$$y2016
000278799 8564_ $$uhttps://juser.fz-juelich.de/record/278799/files/1-s2.0-S0927024815003724-main.pdf$$yRestricted
000278799 8564_ $$uhttps://juser.fz-juelich.de/record/278799/files/1-s2.0-S0927024815003724-main.gif?subformat=icon$$xicon$$yRestricted
000278799 8564_ $$uhttps://juser.fz-juelich.de/record/278799/files/1-s2.0-S0927024815003724-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000278799 8564_ $$uhttps://juser.fz-juelich.de/record/278799/files/1-s2.0-S0927024815003724-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000278799 8564_ $$uhttps://juser.fz-juelich.de/record/278799/files/1-s2.0-S0927024815003724-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000278799 8564_ $$uhttps://juser.fz-juelich.de/record/278799/files/1-s2.0-S0927024815003724-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000278799 909CO $$ooai:juser.fz-juelich.de:278799$$pVDB
000278799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156469$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000278799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000278799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142337$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000278799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000278799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000278799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000278799 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000278799 9131_ $$0G:(DE-HGF)POF3-126$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar Fuels$$x1
000278799 9141_ $$y2016
000278799 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL ENERG MAT SOL C : 2013
000278799 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000278799 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000278799 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000278799 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000278799 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000278799 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000278799 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000278799 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL ENERG MAT SOL C : 2013
000278799 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000278799 980__ $$ajournal
000278799 980__ $$aVDB
000278799 980__ $$aI:(DE-Juel1)IEK-5-20101013
000278799 980__ $$aUNRESTRICTED
000278799 981__ $$aI:(DE-Juel1)IMD-3-20101013