001     278799
005     20240712084459.0
024 7 _ |a 10.1016/j.solmat.2015.07.033
|2 doi
024 7 _ |a 0927-0248
|2 ISSN
024 7 _ |a 1879-3398
|2 ISSN
024 7 _ |a WOS:000367772200009
|2 WOS
024 7 _ |a altmetric:4838269
|2 altmetric
037 _ _ |a FZJ-2015-07033
082 _ _ |a 530
100 1 _ |a Urbain, Felix
|0 P:(DE-Juel1)156469
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Light-induced degradation of adapted quadruple junction thin film silicon solar cells for photoelectrochemical water splitting
260 _ _ |a Amsterdam
|c 2016
|b North Holland
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449157411_28392
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The fabrication process of high performance quadruple junction thin film silicon solar cells is described and the application of the solar cells in an integrated photoelectrochemical water splitting device is demonstrated. It is shown that the performance of solar cells can be adjusted by varying the process parameters and the thickness of the absorber layers of the individual sub cells and by integrating microcrystalline silicon oxide as intermediate reflecting layers. Thereby current matching of the sub cells was improved and a high open-circuit voltage of 2.8 V was achieved. Furthermore, the solar cell stability against light-induced degradation was investigated. Efficiencies of 13.2% (initial) and 12.6% (after 1000 h of light-soaking) were achieved. Bias-free water splitting with a solar-to-hydrogen efficiency of 7.8% was demonstrated in an integrated photovoltaic–electrochemical device using the developed quadruple junction photocathode. Finally, it is shown that in the case of quadruple junction solar cells the light-induced degradation has a lower effect on the photovoltaic–electrochemical efficiency as on the photovoltaic efficiency.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |a 126 - Solar Fuels (POF3-126)
|0 G:(DE-HGF)POF3-126
|c POF3-126
|f POF III
|x 1
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 2
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Smirnov, Vladimir
|0 P:(DE-Juel1)130297
|b 1
|u fzj
700 1 _ |a Becker, Jan Philipp
|0 P:(DE-Juel1)142337
|b 2
|u fzj
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 3
|u fzj
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 4
|u fzj
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 5
|u fzj
773 _ _ |a 10.1016/j.solmat.2015.07.033
|g Vol. 145, p. 142 - 147
|0 PERI:(DE-600)2012677-3
|n 2
|p 142 - 147
|t Solar energy materials & solar cells
|v 145
|y 2016
|x 0927-0248
856 4 _ |u https://juser.fz-juelich.de/record/278799/files/1-s2.0-S0927024815003724-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/278799/files/1-s2.0-S0927024815003724-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/278799/files/1-s2.0-S0927024815003724-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/278799/files/1-s2.0-S0927024815003724-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/278799/files/1-s2.0-S0927024815003724-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/278799/files/1-s2.0-S0927024815003724-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:278799
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156469
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130297
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)142337
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130238
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-126
|2 G:(DE-HGF)POF3-100
|v Solar Fuels
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL ENERG MAT SOL C : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL ENERG MAT SOL C : 2013
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21