001     278804
005     20240711085600.0
024 7 _ |a 10.1016/j.ssi.2015.11.004
|2 doi
024 7 _ |a 0167-2738
|2 ISSN
024 7 _ |a 1872-7689
|2 ISSN
024 7 _ |a WOS:000367113100005
|2 WOS
037 _ _ |a FZJ-2015-07037
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Niedrig, Christian
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Oxygen equilibration kinetics of mixed-conducting perovskites BSCF, LSCF, and PSCF at 900°C determined by electrical conductivity relaxation
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452503077_913
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a For an application of mixed ionic-electronic conducting (MIEC) perovskite oxides, e.g., as solid oxide fuel cell (SOFC) cathodes, as high-temperature gas sensors or as oxygen-transport membrane (OTM) materials, the kinetics of oxygen transport is of fundamental importance.A common setup for the determination of the chemical diffusion coefficient Dδ and the surface exchange coefficient kδ is the electrical conductivity relaxation (ECR) method where the conductivity response of an MIEC sample is measured after the ambient oxygen partial pressure pO2 has been abruptly changed using different gas mixtures. In the present study, however, a closed tubular zirconia “oxygen pump” setup was used which facilitates precise pO2 control in a closed sample space with a high resolution at temperatures above 700 °C in atmospheres ranging from pure oxygen continuously down to pO2 = 10− 18 bar. Reasonably fast pO2 changes enable an application of the ECR technique on MIEC oxides down to lower partial pressures not easily accessible with gas mixtures.The oxygen transport parameters of dense ceramic bulk samples of Ba0.5Sr0.5Co0.8Fe0.2O3 -δ (BSCF), La0.58Sr0.4Co0.2Fe0.8O3 -δ (LSCF), and Pr0.58Sr0.4Co0.2Fe0.8O3 -δ (PSCF) have been studied as a function of temperature (800 and 900 °C) in the range between 10− 6 ≤ pO2/bar ≤ 0.21. The Dδ and kδ values obtained for LSCF at 800 °C are in good agreement with values from literature, proving the usability of the setup for ECR measurements. For BSCF, LSCF, and PSCF, Dδ and kδ values could be determined for the first time at 900 °C as a function of pO2.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wagner, Stefan F.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Menesklou, Wolfgang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 3
|u fzj
700 1 _ |a Ivers-Tiffée, Ellen
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.ssi.2015.11.004
|g p. S0167273815004105
|0 PERI:(DE-600)1500750-9
|p 30-37
|t Solid state ionics
|v 283
|y 2015
|x 0167-2738
856 4 _ |u https://juser.fz-juelich.de/record/278804/files/1-s2.0-S0167273815004105-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/278804/files/1-s2.0-S0167273815004105-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/278804/files/1-s2.0-S0167273815004105-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/278804/files/1-s2.0-S0167273815004105-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/278804/files/1-s2.0-S0167273815004105-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/278804/files/1-s2.0-S0167273815004105-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:278804
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129587
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE IONICS : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21