000278811 001__ 278811
000278811 005__ 20240711085600.0
000278811 0247_ $$2doi$$a10.1016/j.ssi.2015.11.001
000278811 0247_ $$2ISSN$$a0167-2738
000278811 0247_ $$2ISSN$$a1872-7689
000278811 0247_ $$2WOS$$aWOS:000367113100008
000278811 037__ $$aFZJ-2015-07038
000278811 041__ $$aEnglish
000278811 082__ $$a530
000278811 1001_ $$0P:(DE-HGF)0$$aHeidenreich, M.$$b0$$eCorresponding author
000278811 245__ $$aExpansion behaviour of (Gd, Pr)-substituted CeO$_{2}$ in dependence on temperature and oxygen partial pressure
000278811 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000278811 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452503415_914
000278811 3367_ $$2DataCite$$aOutput Types/Journal article
000278811 3367_ $$00$$2EndNote$$aJournal Article
000278811 3367_ $$2BibTeX$$aARTICLE
000278811 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278811 3367_ $$2DRIVER$$aarticle
000278811 520__ $$aSubstituted ceria is a material which has attracted great interest in solid oxide fuel cell technology [45]. Due to its chemical stability, it may also be a promising candidate as a mixed conductive membrane for oxygen separation with flue gas contact. As part of this paper, dilatometry measurements and X-ray powder diffraction experiments were carried out on ceramic materials in air and in argon with two separate series involving the substitution of ceria; cerium was substituted with different amounts of Gd and Pr. The first substitution of Gd caused an increase of the unit cell with a small rise in linear thermal expansion in relation to pure ceria. CeO2 − δ and Ce0.8Gd0.2O2 − δ showed no chemical expansion in both atmospheres. The second substitution of Gd with Pr decreased the unit cell in relation to pure ceria. It is therefore understandable that Pr is preferentially introduced and shown in this work as Pr4 + in ceria. These samples showed a remarkable chemical expansion in air and in argon. The chemical expansion displayed a clear positive correlation with increasing Pr content. The thermal expansion coefficients are comparable to the first substitution without any trend in relation to the amount of Pr. The dilatometry behaviour above 400 °C can be explained due to the release of oxygen and simultaneous reduction of Pr4 +, forming Pr3 + and oxygen vacancies. The results are in accordance with the two competing processes of forming vacancies (lattice contraction) and ionic radius change (lattice expansion) [16] and [27]. After cooling in air, the samples showed no residual expansion. In contrast, these samples displayed a remarkable residual expansion in argon of about 0.87% of the total relative expansion of 1.85% for Ce0.8Pr0.2O2 − δ
000278811 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000278811 588__ $$aDataset connected to CrossRef
000278811 7001_ $$0P:(DE-HGF)0$$aKaps, Ch.$$b1
000278811 7001_ $$0P:(DE-HGF)0$$aSimon, A.$$b2
000278811 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, F.$$b3$$ufzj
000278811 7001_ $$0P:(DE-Juel1)129587$$aBaumann, S.$$b4$$ufzj
000278811 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2015.11.001$$gp. S0167273815004075$$p56-67$$tSolid state ionics$$v283$$x0167-2738$$y2015
000278811 8564_ $$uhttps://juser.fz-juelich.de/record/278811/files/1-s2.0-S0167273815004075-main.pdf$$yRestricted
000278811 8564_ $$uhttps://juser.fz-juelich.de/record/278811/files/1-s2.0-S0167273815004075-main.gif?subformat=icon$$xicon$$yRestricted
000278811 8564_ $$uhttps://juser.fz-juelich.de/record/278811/files/1-s2.0-S0167273815004075-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000278811 8564_ $$uhttps://juser.fz-juelich.de/record/278811/files/1-s2.0-S0167273815004075-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000278811 8564_ $$uhttps://juser.fz-juelich.de/record/278811/files/1-s2.0-S0167273815004075-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000278811 8564_ $$uhttps://juser.fz-juelich.de/record/278811/files/1-s2.0-S0167273815004075-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000278811 909CO $$ooai:juser.fz-juelich.de:278811$$pVDB
000278811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000278811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000278811 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000278811 9141_ $$y2015
000278811 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000278811 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2014
000278811 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000278811 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000278811 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000278811 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000278811 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000278811 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000278811 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000278811 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000278811 920__ $$lyes
000278811 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000278811 980__ $$ajournal
000278811 980__ $$aVDB
000278811 980__ $$aUNRESTRICTED
000278811 980__ $$aI:(DE-Juel1)IEK-1-20101013
000278811 981__ $$aI:(DE-Juel1)IMD-2-20101013