001     278811
005     20240711085600.0
024 7 _ |a 10.1016/j.ssi.2015.11.001
|2 doi
024 7 _ |a 0167-2738
|2 ISSN
024 7 _ |a 1872-7689
|2 ISSN
024 7 _ |a WOS:000367113100008
|2 WOS
037 _ _ |a FZJ-2015-07038
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Heidenreich, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Expansion behaviour of (Gd, Pr)-substituted CeO$_{2}$ in dependence on temperature and oxygen partial pressure
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452503415_914
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Substituted ceria is a material which has attracted great interest in solid oxide fuel cell technology [45]. Due to its chemical stability, it may also be a promising candidate as a mixed conductive membrane for oxygen separation with flue gas contact. As part of this paper, dilatometry measurements and X-ray powder diffraction experiments were carried out on ceramic materials in air and in argon with two separate series involving the substitution of ceria; cerium was substituted with different amounts of Gd and Pr. The first substitution of Gd caused an increase of the unit cell with a small rise in linear thermal expansion in relation to pure ceria. CeO2 − δ and Ce0.8Gd0.2O2 − δ showed no chemical expansion in both atmospheres. The second substitution of Gd with Pr decreased the unit cell in relation to pure ceria. It is therefore understandable that Pr is preferentially introduced and shown in this work as Pr4 + in ceria. These samples showed a remarkable chemical expansion in air and in argon. The chemical expansion displayed a clear positive correlation with increasing Pr content. The thermal expansion coefficients are comparable to the first substitution without any trend in relation to the amount of Pr. The dilatometry behaviour above 400 °C can be explained due to the release of oxygen and simultaneous reduction of Pr4 +, forming Pr3 + and oxygen vacancies. The results are in accordance with the two competing processes of forming vacancies (lattice contraction) and ionic radius change (lattice expansion) [16] and [27]. After cooling in air, the samples showed no residual expansion. In contrast, these samples displayed a remarkable residual expansion in argon of about 0.87% of the total relative expansion of 1.85% for Ce0.8Pr0.2O2 − δ
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kaps, Ch.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Simon, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schulze-Küppers, F.
|0 P:(DE-Juel1)129660
|b 3
|u fzj
700 1 _ |a Baumann, S.
|0 P:(DE-Juel1)129587
|b 4
|u fzj
773 _ _ |a 10.1016/j.ssi.2015.11.001
|g p. S0167273815004075
|0 PERI:(DE-600)1500750-9
|p 56-67
|t Solid state ionics
|v 283
|y 2015
|x 0167-2738
856 4 _ |u https://juser.fz-juelich.de/record/278811/files/1-s2.0-S0167273815004075-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/278811/files/1-s2.0-S0167273815004075-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/278811/files/1-s2.0-S0167273815004075-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/278811/files/1-s2.0-S0167273815004075-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/278811/files/1-s2.0-S0167273815004075-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/278811/files/1-s2.0-S0167273815004075-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:278811
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129660
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129587
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE IONICS : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21