000278906 001__ 278906
000278906 005__ 20240712100956.0
000278906 0247_ $$2doi$$a10.3402/tellusb.v67.27955
000278906 0247_ $$2ISSN$$a0280-6509
000278906 0247_ $$2ISSN$$a1600-0889
000278906 0247_ $$2Handle$$a2128/9517
000278906 0247_ $$2WOS$$aWOS:000365974100001
000278906 0247_ $$2altmetric$$aaltmetric:21827821
000278906 037__ $$aFZJ-2015-07082
000278906 082__ $$a550
000278906 1001_ $$0P:(DE-HGF)0$$aGaudel, Audrey$$b0$$eCorresponding author
000278906 245__ $$aOn the use of MOZAIC-IAGOS data to assess the ability of the MACC reanalysis to reproduce the distribution of ozone and CO in the UTLS over Europe
000278906 260__ $$aStockholm$$bInst.$$c2015
000278906 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449582443_18274
000278906 3367_ $$2DataCite$$aOutput Types/Journal article
000278906 3367_ $$00$$2EndNote$$aJournal Article
000278906 3367_ $$2BibTeX$$aARTICLE
000278906 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278906 3367_ $$2DRIVER$$aarticle
000278906 520__ $$aMOZAIC-IAGOS data are used to assess the ability of the MACC reanalysis (REAN) to reproduce distributions of ozone (O3) and carbon monoxide (CO), along with vertical and inter-annual variability in the upper troposphere/lower stratosphere region (UTLS) over Europe for the period 2003–2010. A control run (CNTRL, without assimilation) is compared with the MACC reanalysis (REAN, with assimilation) to assess the impact of assimilation. On average over the period, REAN underestimates ozone by 60 ppbv in the lower stratosphere (LS), whilst CO is overestimated by 20 ppbv. In the upper troposphere (UT), ozone is overestimated by 50 ppbv, while CO is partly over or underestimated by up to 20 ppbv. As expected, assimilation generally improves model results but there are some exceptions. Assimilation leads to increased CO mixing ratios in the UT which reduce the biases of the model in this region but the difference in CO mixing ratios between LS and UT has not changed and remains underestimated after assimilation. Therefore, this leads to a significant positive bias of CO in the LS after assimilation. Assimilation improves estimates of the amplitude of the seasonal cycle for both species. Additionally, the observations clearly show a general negative trend of CO in the UT which is rather well reproduced by REAN. However, REAN misses the observed inter-annual variability in summer. The O3–CO correlation in the Ex-UTLS is rather well reproduced by the CNTRL and REAN, although REAN tends to miss the lowest CO mixing ratios for the four seasons and tends to oversample the extra-tropical transition layer (ExTL region) in spring. This evaluation stresses the importance of the model gradients for a good description of the mixing in the Ex-UTLS region, which is inherently difficult to observe from satellite instruments.
000278906 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000278906 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000278906 536__ $$0G:(EU-Grant)633080$$aMACC-III - Monitoring Atmospheric Composition and Climate -III (633080)$$c633080$$fH2020-Adhoc-2014-20$$x2
000278906 536__ $$0G:(DE-82)BMBF-20180331-IAGOSD$$aIAGOS-D - In-Service Aircraft for a Global Observing System – German Contribution to the Main Phase of IAGOS (BMBF-20180331-IAGOSD)$$cBMBF-20180331-IAGOSD$$x3
000278906 588__ $$aDataset connected to CrossRef
000278906 7001_ $$0P:(DE-HGF)0$$aClark, Hannah$$b1
000278906 7001_ $$0P:(DE-HGF)0$$aThouret, Valerie$$b2
000278906 7001_ $$0P:(DE-HGF)0$$aJones, Luke$$b3
000278906 7001_ $$0P:(DE-HGF)0$$aInness, Antje$$b4
000278906 7001_ $$0P:(DE-HGF)0$$aFlemming, Johannes$$b5
000278906 7001_ $$0P:(DE-Juel1)3709$$aStein, Olaf$$b6$$ufzj
000278906 7001_ $$0P:(DE-Juel1)151210$$aHuijnen, Vincent$$b7
000278906 7001_ $$0P:(DE-HGF)0$$aEskes, Henk$$b8
000278906 7001_ $$0P:(DE-HGF)0$$aNedelec, Philippe$$b9
000278906 7001_ $$0P:(DE-HGF)0$$aBoulanger, Damien$$b10
000278906 773__ $$0PERI:(DE-600)2026992-4$$a10.3402/tellusb.v67.27955$$gVol. 67, no. 0$$n0$$p27955$$tTellus / B$$v67$$x1600-0889$$y2015
000278906 8564_ $$uhttps://juser.fz-juelich.de/record/278906/files/27955-180958-1-PB.pdf$$yOpenAccess
000278906 8564_ $$uhttps://juser.fz-juelich.de/record/278906/files/27955-180958-1-PB.gif?subformat=icon$$xicon$$yOpenAccess
000278906 8564_ $$uhttps://juser.fz-juelich.de/record/278906/files/27955-180958-1-PB.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000278906 8564_ $$uhttps://juser.fz-juelich.de/record/278906/files/27955-180958-1-PB.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000278906 8564_ $$uhttps://juser.fz-juelich.de/record/278906/files/27955-180958-1-PB.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000278906 8564_ $$uhttps://juser.fz-juelich.de/record/278906/files/27955-180958-1-PB.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000278906 909CO $$ooai:juser.fz-juelich.de:278906$$pdnbdelivery$$pec_fundedresources$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000278906 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000278906 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000278906 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000278906 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000278906 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTELLUS B : 2014
000278906 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000278906 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000278906 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000278906 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000278906 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000278906 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000278906 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000278906 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000278906 9141_ $$y2015
000278906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3709$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000278906 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000278906 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000278906 920__ $$lyes
000278906 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000278906 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000278906 9801_ $$aFullTexts
000278906 980__ $$ajournal
000278906 980__ $$aVDB
000278906 980__ $$aI:(DE-Juel1)IEK-8-20101013
000278906 980__ $$aI:(DE-Juel1)JSC-20090406
000278906 980__ $$aUNRESTRICTED
000278906 981__ $$aI:(DE-Juel1)ICE-3-20101013
000278906 981__ $$aI:(DE-Juel1)JSC-20090406