001     278906
005     20240712100956.0
024 7 _ |2 doi
|a 10.3402/tellusb.v67.27955
024 7 _ |2 ISSN
|a 0280-6509
024 7 _ |2 ISSN
|a 1600-0889
024 7 _ |2 Handle
|a 2128/9517
024 7 _ |2 WOS
|a WOS:000365974100001
024 7 _ |a altmetric:21827821
|2 altmetric
037 _ _ |a FZJ-2015-07082
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Gaudel, Audrey
|b 0
|e Corresponding author
245 _ _ |a On the use of MOZAIC-IAGOS data to assess the ability of the MACC reanalysis to reproduce the distribution of ozone and CO in the UTLS over Europe
260 _ _ |a Stockholm
|b Inst.
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1449582443_18274
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a MOZAIC-IAGOS data are used to assess the ability of the MACC reanalysis (REAN) to reproduce distributions of ozone (O3) and carbon monoxide (CO), along with vertical and inter-annual variability in the upper troposphere/lower stratosphere region (UTLS) over Europe for the period 2003–2010. A control run (CNTRL, without assimilation) is compared with the MACC reanalysis (REAN, with assimilation) to assess the impact of assimilation. On average over the period, REAN underestimates ozone by 60 ppbv in the lower stratosphere (LS), whilst CO is overestimated by 20 ppbv. In the upper troposphere (UT), ozone is overestimated by 50 ppbv, while CO is partly over or underestimated by up to 20 ppbv. As expected, assimilation generally improves model results but there are some exceptions. Assimilation leads to increased CO mixing ratios in the UT which reduce the biases of the model in this region but the difference in CO mixing ratios between LS and UT has not changed and remains underestimated after assimilation. Therefore, this leads to a significant positive bias of CO in the LS after assimilation. Assimilation improves estimates of the amplitude of the seasonal cycle for both species. Additionally, the observations clearly show a general negative trend of CO in the UT which is rather well reproduced by REAN. However, REAN misses the observed inter-annual variability in summer. The O3–CO correlation in the Ex-UTLS is rather well reproduced by the CNTRL and REAN, although REAN tends to miss the lowest CO mixing ratios for the four seasons and tends to oversample the extra-tropical transition layer (ExTL region) in spring. This evaluation stresses the importance of the model gradients for a good description of the mixing in the Ex-UTLS region, which is inherently difficult to observe from satellite instruments.
536 _ _ |0 G:(DE-HGF)POF3-243
|a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|c POF3-243
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 1
536 _ _ |0 G:(EU-Grant)633080
|a MACC-III - Monitoring Atmospheric Composition and Climate -III (633080)
|c 633080
|f H2020-Adhoc-2014-20
|x 2
536 _ _ |0 G:(DE-82)BMBF-20180331-IAGOSD
|a IAGOS-D - In-Service Aircraft for a Global Observing System – German Contribution to the Main Phase of IAGOS (BMBF-20180331-IAGOSD)
|c BMBF-20180331-IAGOSD
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Clark, Hannah
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Thouret, Valerie
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Jones, Luke
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Inness, Antje
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Flemming, Johannes
|b 5
700 1 _ |0 P:(DE-Juel1)3709
|a Stein, Olaf
|b 6
|u fzj
700 1 _ |0 P:(DE-Juel1)151210
|a Huijnen, Vincent
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Eskes, Henk
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Nedelec, Philippe
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Boulanger, Damien
|b 10
773 _ _ |0 PERI:(DE-600)2026992-4
|a 10.3402/tellusb.v67.27955
|g Vol. 67, no. 0
|n 0
|p 27955
|t Tellus / B
|v 67
|x 1600-0889
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/278906/files/27955-180958-1-PB.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/278906/files/27955-180958-1-PB.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/278906/files/27955-180958-1-PB.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/278906/files/27955-180958-1-PB.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/278906/files/27955-180958-1-PB.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/278906/files/27955-180958-1-PB.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:278906
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)3709
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-243
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Computational Science and Mathematical Methods
|x 1
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b TELLUS B : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21