TY  - JOUR
AU  - Nair, Harikrishnan S.
AU  - Fu, Zhendong
AU  - Kumar, C. M. N.
AU  - Pomjakushin, V. Y.
AU  - Xiao, Yinguo
AU  - Chatterji, Tapan
AU  - Strydom, André M.
TI  - Spin-lattice coupling and frustrated magnetism in Fe-doped hexagonal LuMnO 3
JO  - epl
VL  - 110
IS  - 3
SN  - 0295-5075
CY  - Les-Ulis
PB  - EDP Science65224
M1  - FZJ-2015-07119
SP  - 37007
PY  - 2015
AB  - Strong spin-lattice coupling and prominent frustration effects observed in the 50% Fe-doped frustrated hexagonal $(h)\text{LuMnO}_3$ are reported. A Néel transition at $T_{\mathrm{N}}\approx112\ \text{K}$ and a possible spin re-orientation transition at $T_{\mathrm{SR}}\approx55\ \text{K}$ are observed in the magnetization data. From neutron powder diffraction data, the nuclear structure at and below 300 K was refined in polar P63cm space group. While the magnetic structure of LuMnO3 belongs to the $\Gamma_4\ (P6'_3c'm)$ representation, that of LuFe0.5Mn0.5O3 belongs to $\Gamma_1\ (P6_3cm)$ which is supported by the strong intensity for the (100) reflection and also judging by the presence of spin-lattice coupling. The refined atomic positions for Lu and Mn/Fe indicate significant atomic displacements at $T_{\mathrm{N}}$ and $T_{\mathrm{SR}}$ which confirms strong spin-lattice coupling. Our results complement the discovery of room temperature multiferroicity in thin films of $h\text{LuFeO}_3$ and would give impetus to study LuFe1−x Mn x O3 systems as potential multiferroics where electric polarization is linked to giant atomic displacements.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000356609500023
DO  - DOI:10.1209/0295-5075/110/37007
UR  - https://juser.fz-juelich.de/record/278944
ER  -