000278958 001__ 278958
000278958 005__ 20210129220955.0
000278958 0247_ $$2doi$$a10.1016/j.soilbio.2015.07.025
000278958 0247_ $$2ISSN$$a0038-0717
000278958 0247_ $$2ISSN$$a1879-3428
000278958 0247_ $$2WOS$$aWOS:000363075500008
000278958 0247_ $$2altmetric$$aaltmetric:6974118
000278958 037__ $$aFZJ-2015-07128
000278958 082__ $$a570
000278958 1001_ $$0P:(DE-HGF)0$$aGryndler, Milan$$b0$$eCorresponding author
000278958 245__ $$aMutabilis in mutabili: Spatiotemporal dynamics of a truffle colony in soil
000278958 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000278958 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449569596_18273
000278958 3367_ $$2DataCite$$aOutput Types/Journal article
000278958 3367_ $$00$$2EndNote$$aJournal Article
000278958 3367_ $$2BibTeX$$aARTICLE
000278958 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278958 3367_ $$2DRIVER$$aarticle
000278958 520__ $$aThe functioning of ectomycorrhizal (ECM) symbioses is closely related to the development of the soil mycelial phase the ECM fungi. The properties and spatiotemporal dynamics of such mycelia in ecosystems is, however, poorly understood. Here we show, using a soil colony of summer truffle (Tuber aestivum) as a model, that an ECM mycelium may only grow and colonize newly-opened soil patches when soil temperatures rise above certain threshold, in this case +10 °C, provided other requirements such as sufficient soil moisture are fulfilled. Extension rates of truffle mycelium in the fields was recorded as >0.3 μm min−1, several-fold greater than that predicted from laboratory cultures. Further, we demonstrated that there was a consistent spatial differentiation in mycelium growth patterns within the fungal colony on a decimeter scale, changing from “diffusion” type of growth at the colony margin to “colony-front” pattern further away from the colony margin. This change was clearly accompanied by shifting structure of soil microbial communities with Terrimonas sp. and another unidentified bacterium correlating with the “colony-front” mycelium growth pattern, and Sphingomonas sp. and Lysobacter brunnescens with the “diffusion” type of mycelium growth. Possible implications of the observed truffle colony differentiation are discussed for processes like fruit-body formation and dispersal of this ECM fungus. Our data indicate that the thallus of T. aestivum has to be considered as a principally variable (“mutabilis”) being in space and time, whose behavior correlates with conditions in ever changing soil environment (“in mutabili”).
000278958 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000278958 588__ $$aDataset connected to CrossRef
000278958 7001_ $$00000-0002-6814-6087$$aBeskid, Olena$$b1
000278958 7001_ $$0P:(DE-HGF)0$$aHršelová, Hana$$b2
000278958 7001_ $$0P:(DE-HGF)0$$aBukovská, Petra$$b3
000278958 7001_ $$0P:(DE-HGF)0$$aHujslová, Martina$$b4
000278958 7001_ $$0P:(DE-HGF)0$$aGryndlerová, Hana$$b5
000278958 7001_ $$0P:(DE-HGF)0$$aKonvalinková, Tereza$$b6
000278958 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b7
000278958 7001_ $$0P:(DE-HGF)0$$aSochorová, Lenka$$b8
000278958 7001_ $$0P:(DE-HGF)0$$aJansa, Jan$$b9
000278958 773__ $$0PERI:(DE-600)1498740-5$$a10.1016/j.soilbio.2015.07.025$$gVol. 90, p. 62 - 70$$p62 - 70$$tSoil biology & biochemistry$$v90$$x0038-0717$$y2015
000278958 8564_ $$uhttps://juser.fz-juelich.de/record/278958/files/1-s2.0-S0038071715002679-main.pdf$$yRestricted
000278958 8564_ $$uhttps://juser.fz-juelich.de/record/278958/files/1-s2.0-S0038071715002679-main.gif?subformat=icon$$xicon$$yRestricted
000278958 8564_ $$uhttps://juser.fz-juelich.de/record/278958/files/1-s2.0-S0038071715002679-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000278958 8564_ $$uhttps://juser.fz-juelich.de/record/278958/files/1-s2.0-S0038071715002679-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000278958 8564_ $$uhttps://juser.fz-juelich.de/record/278958/files/1-s2.0-S0038071715002679-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000278958 8564_ $$uhttps://juser.fz-juelich.de/record/278958/files/1-s2.0-S0038071715002679-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000278958 909CO $$ooai:juser.fz-juelich.de:278958$$pVDB:Earth_Environment$$pVDB
000278958 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000278958 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOIL BIOL BIOCHEM : 2014
000278958 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000278958 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000278958 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000278958 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000278958 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000278958 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000278958 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000278958 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000278958 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000278958 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000278958 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000278958 9141_ $$y2015
000278958 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000278958 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000278958 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000278958 980__ $$ajournal
000278958 980__ $$aVDB
000278958 980__ $$aI:(DE-Juel1)IBG-3-20101118
000278958 980__ $$aUNRESTRICTED