000278960 001__ 278960
000278960 005__ 20220930130052.0
000278960 0247_ $$2doi$$a10.1002/2014WR016574
000278960 0247_ $$2ISSN$$a0043-1397
000278960 0247_ $$2ISSN$$a0148-0227
000278960 0247_ $$2ISSN$$a1944-7973
000278960 0247_ $$2WOS$$aWOS:000363402800037
000278960 0247_ $$2Handle$$a2128/17087
000278960 037__ $$aFZJ-2015-07130
000278960 082__ $$a550
000278960 1001_ $$0P:(DE-Juel1)143709$$aDuschl, Markus$$b0
000278960 245__ $$aIn situ determination of surface relaxivities for unconsolidated sediments
000278960 260__ $$aWashington, DC$$bAGU$$c2015
000278960 3367_ $$2DRIVER$$aarticle
000278960 3367_ $$2DataCite$$aOutput Types/Journal article
000278960 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449576187_18270
000278960 3367_ $$2BibTeX$$aARTICLE
000278960 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278960 3367_ $$00$$2EndNote$$aJournal Article
000278960 520__ $$aNMR relaxometry has developed into a method for rapid pore-size determination of natural porous media. Nevertheless, it is prone to uncertainties because of unknown surface relaxivities which depend mainly on the chemical composition of the pore walls as well as on the interfacial dynamics of the pore fluid. The classical approach for the determination of surface relaxivities is the scaling of NMR relaxation times by surface to volume ratios measured by gas adsorption or mercury intrusion. However, it is preferable that a method for the determination of average pore sizes uses the same substance, water, as probe molecule for both relaxometry and surface to volume measurements. One should also ensure that in both experiments the dynamics of the probe molecule takes place on similar length scales, which are in the order of some microns. Therefore, we employed NMR diffusion measurements with different observation times using bipolar pulsed field gradients and applied them to unconsolidated sediments (two purified sands, two natural sands, and one soil). The evaluation by Mitra's short-time model for diffusion in restricted environments yielded information about the surface to volume ratios which is independent of relaxation mechanisms. We point out that methods based on NMR diffusometry yield pore dimensions and surface relaxivities consistent with a pore space as sampled by native pore fluids via the diffusion process. This opens a way to calibrate NMR relaxation measurements with other NMR techniques, providing information about the pore-size distribution of natural porous media directly from relaxometry.
000278960 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000278960 588__ $$aDataset connected to CrossRef
000278960 7001_ $$0P:(DE-HGF)0$$aGalvosas, Petrik$$b1$$eCorresponding author
000278960 7001_ $$0P:(DE-HGF)0$$aBrox, Timothy I.$$b2
000278960 7001_ $$0P:(DE-Juel1)129521$$aPohlmeier, Andreas$$b3
000278960 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4
000278960 773__ $$0PERI:(DE-600)2029553-4$$a10.1002/2014WR016574$$gVol. 51, no. 8, p. 6549 - 6563$$n8$$p6549 - 6563$$tWater resources research$$v51$$x0043-1397$$y2015
000278960 8564_ $$uhttps://juser.fz-juelich.de/record/278960/files/Duschl_et_al-2015-Water_Resources_Research.pdf$$yOpenAccess
000278960 8564_ $$uhttps://juser.fz-juelich.de/record/278960/files/Duschl_et_al-2015-Water_Resources_Research.gif?subformat=icon$$xicon$$yOpenAccess
000278960 8564_ $$uhttps://juser.fz-juelich.de/record/278960/files/Duschl_et_al-2015-Water_Resources_Research.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000278960 8564_ $$uhttps://juser.fz-juelich.de/record/278960/files/Duschl_et_al-2015-Water_Resources_Research.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000278960 8564_ $$uhttps://juser.fz-juelich.de/record/278960/files/Duschl_et_al-2015-Water_Resources_Research.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000278960 8767_ $$92015-09-03$$d2015-10-08$$ePage charges$$jZahlung erfolgt$$zUSD 125,-
000278960 909CO $$ooai:juser.fz-juelich.de:278960$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000278960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143709$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000278960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129521$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000278960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000278960 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000278960 9141_ $$y2015
000278960 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000278960 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000278960 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR RES : 2014
000278960 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000278960 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000278960 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000278960 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000278960 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000278960 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000278960 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000278960 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000278960 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000278960 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000278960 980__ $$ajournal
000278960 980__ $$aVDB
000278960 980__ $$aUNRESTRICTED
000278960 980__ $$aI:(DE-Juel1)IBG-3-20101118
000278960 980__ $$aAPC
000278960 9801_ $$aAPC
000278960 9801_ $$aFullTexts