001     278960
005     20220930130052.0
024 7 _ |a 10.1002/2014WR016574
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a WOS:000363402800037
|2 WOS
024 7 _ |a 2128/17087
|2 Handle
037 _ _ |a FZJ-2015-07130
082 _ _ |a 550
100 1 _ |a Duschl, Markus
|0 P:(DE-Juel1)143709
|b 0
245 _ _ |a In situ determination of surface relaxivities for unconsolidated sediments
260 _ _ |a Washington, DC
|c 2015
|b AGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449576187_18270
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a NMR relaxometry has developed into a method for rapid pore-size determination of natural porous media. Nevertheless, it is prone to uncertainties because of unknown surface relaxivities which depend mainly on the chemical composition of the pore walls as well as on the interfacial dynamics of the pore fluid. The classical approach for the determination of surface relaxivities is the scaling of NMR relaxation times by surface to volume ratios measured by gas adsorption or mercury intrusion. However, it is preferable that a method for the determination of average pore sizes uses the same substance, water, as probe molecule for both relaxometry and surface to volume measurements. One should also ensure that in both experiments the dynamics of the probe molecule takes place on similar length scales, which are in the order of some microns. Therefore, we employed NMR diffusion measurements with different observation times using bipolar pulsed field gradients and applied them to unconsolidated sediments (two purified sands, two natural sands, and one soil). The evaluation by Mitra's short-time model for diffusion in restricted environments yielded information about the surface to volume ratios which is independent of relaxation mechanisms. We point out that methods based on NMR diffusometry yield pore dimensions and surface relaxivities consistent with a pore space as sampled by native pore fluids via the diffusion process. This opens a way to calibrate NMR relaxation measurements with other NMR techniques, providing information about the pore-size distribution of natural porous media directly from relaxometry.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Galvosas, Petrik
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Brox, Timothy I.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pohlmeier, Andreas
|0 P:(DE-Juel1)129521
|b 3
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 4
773 _ _ |a 10.1002/2014WR016574
|g Vol. 51, no. 8, p. 6549 - 6563
|0 PERI:(DE-600)2029553-4
|n 8
|p 6549 - 6563
|t Water resources research
|v 51
|y 2015
|x 0043-1397
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/278960/files/Duschl_et_al-2015-Water_Resources_Research.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/278960/files/Duschl_et_al-2015-Water_Resources_Research.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/278960/files/Duschl_et_al-2015-Water_Resources_Research.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-700
|u https://juser.fz-juelich.de/record/278960/files/Duschl_et_al-2015-Water_Resources_Research.jpg?subformat=icon-700
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/278960/files/Duschl_et_al-2015-Water_Resources_Research.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:278960
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143709
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129521
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21