000278997 001__ 278997
000278997 005__ 20230310131354.0
000278997 0247_ $$2doi$$a10.1137/14097536X
000278997 0247_ $$2ISSN$$a0196-5204
000278997 0247_ $$2ISSN$$a1064-8275
000278997 0247_ $$2ISSN$$a1095-7197
000278997 0247_ $$2Handle$$a2128/9528
000278997 0247_ $$2WOS$$aWOS:000364457000031
000278997 0247_ $$2altmetric$$aaltmetric:2537338
000278997 037__ $$aFZJ-2015-07167
000278997 082__ $$a004
000278997 1001_ $$0P:(DE-HGF)0$$aMinion, M. L.$$b0$$eCorresponding author
000278997 245__ $$aInterweaving PFASST and Parallel Multigrid
000278997 260__ $$aPhiladelphia, Pa.$$bSIAM$$c2015
000278997 3367_ $$2DRIVER$$aarticle
000278997 3367_ $$2DataCite$$aOutput Types/Journal article
000278997 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502263819_32596
000278997 3367_ $$2BibTeX$$aARTICLE
000278997 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278997 3367_ $$00$$2EndNote$$aJournal Article
000278997 520__ $$aThe parallel full approximation scheme in space and time (PFASST) introduced by Emmett and Minion in 2012 is an iterative strategy for the temporal parallelization of ODEs and discretized PDEs. As the name suggests, PFASST is similar in spirit to a space-time full approximation scheme multigrid method performed over multiple time steps in parallel. However, since the original focus of PFASST was on the performance of the method in terms of time parallelism, the solution of any spatial system arising from the use of implicit or semi-implicit temporal methods within PFASST have simply been assumed to be solved to some desired accuracy completely at each substep and each iteration by some unspecified procedure. It hence is natural to investigate how iterative solvers in the spatial dimensions can be interwoven with the PFASST iterations and whether this strategy leads to a more efficient overall approach. This paper presents an initial investigation on the relative performance of different strategies for coupling PFASST iterations with multigrid methods for the implicit treatment of diffusion terms in PDEs. In particular, we compare full accuracy multigrid solves at each substep with a small fixed number of multigrid V-cycles. This reduces the cost of each PFASST iteration at the possible expense of a corresponding increase in the number of PFASST iterations needed for convergence. Parallel efficiency of the resulting methods is explored through numerical examples.
000278997 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000278997 536__ $$0G:(GEPRIS)450829162$$aDFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)$$c450829162$$x1
000278997 536__ $$0G:(DE-Juel1)hwu12_20141101$$aScalable solvers for linear systems and time-dependent problems (hwu12_20141101)$$chwu12_20141101$$fScalable solvers for linear systems and time-dependent problems$$x2
000278997 588__ $$aDataset connected to CrossRef
000278997 7001_ $$0P:(DE-Juel1)132268$$aSpeck, R.$$b1$$ufzj
000278997 7001_ $$0P:(DE-HGF)0$$aBolten, M.$$b2
000278997 7001_ $$0P:(DE-HGF)0$$aEmmett, M.$$b3
000278997 7001_ $$0P:(DE-HGF)0$$aRuprecht, D.$$b4
000278997 773__ $$0PERI:(DE-600)1468391-x$$a10.1137/14097536X$$gVol. 37, no. 5, p. S244 - S263$$n5$$pS244 - S263$$tSIAM journal on scientific computing$$v37$$x0196-5204$$y2015
000278997 8564_ $$uhttps://juser.fz-juelich.de/record/278997/files/1407.6486v2.pdf$$yOpenAccess
000278997 8564_ $$uhttps://juser.fz-juelich.de/record/278997/files/1407.6486v2.gif?subformat=icon$$xicon$$yOpenAccess
000278997 8564_ $$uhttps://juser.fz-juelich.de/record/278997/files/1407.6486v2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000278997 8564_ $$uhttps://juser.fz-juelich.de/record/278997/files/1407.6486v2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000278997 8564_ $$uhttps://juser.fz-juelich.de/record/278997/files/1407.6486v2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000278997 8564_ $$uhttps://juser.fz-juelich.de/record/278997/files/1407.6486v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000278997 909CO $$ooai:juser.fz-juelich.de:278997$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000278997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000278997 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000278997 9141_ $$y2015
000278997 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000278997 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSIAM J SCI COMPUT : 2014
000278997 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000278997 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000278997 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000278997 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000278997 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000278997 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000278997 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000278997 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000278997 920__ $$lyes
000278997 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000278997 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000278997 980__ $$ajournal
000278997 980__ $$aVDB
000278997 980__ $$aI:(DE-Juel1)JSC-20090406
000278997 980__ $$aI:(DE-Juel1)NIC-20090406
000278997 980__ $$aUNRESTRICTED
000278997 9801_ $$aUNRESTRICTED
000278997 9801_ $$aFullTexts