001     278997
005     20230310131354.0
024 7 _ |a 10.1137/14097536X
|2 doi
024 7 _ |a 0196-5204
|2 ISSN
024 7 _ |a 1064-8275
|2 ISSN
024 7 _ |a 1095-7197
|2 ISSN
024 7 _ |a 2128/9528
|2 Handle
024 7 _ |a WOS:000364457000031
|2 WOS
024 7 _ |a altmetric:2537338
|2 altmetric
037 _ _ |a FZJ-2015-07167
082 _ _ |a 004
100 1 _ |a Minion, M. L.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Interweaving PFASST and Parallel Multigrid
260 _ _ |a Philadelphia, Pa.
|c 2015
|b SIAM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1502263819_32596
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The parallel full approximation scheme in space and time (PFASST) introduced by Emmett and Minion in 2012 is an iterative strategy for the temporal parallelization of ODEs and discretized PDEs. As the name suggests, PFASST is similar in spirit to a space-time full approximation scheme multigrid method performed over multiple time steps in parallel. However, since the original focus of PFASST was on the performance of the method in terms of time parallelism, the solution of any spatial system arising from the use of implicit or semi-implicit temporal methods within PFASST have simply been assumed to be solved to some desired accuracy completely at each substep and each iteration by some unspecified procedure. It hence is natural to investigate how iterative solvers in the spatial dimensions can be interwoven with the PFASST iterations and whether this strategy leads to a more efficient overall approach. This paper presents an initial investigation on the relative performance of different strategies for coupling PFASST iterations with multigrid methods for the implicit treatment of diffusion terms in PDEs. In particular, we compare full accuracy multigrid solves at each substep with a small fixed number of multigrid V-cycles. This reduces the cost of each PFASST iteration at the possible expense of a corresponding increase in the number of PFASST iterations needed for convergence. Parallel efficiency of the resulting methods is explored through numerical examples.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
536 _ _ |a DFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)
|0 G:(GEPRIS)450829162
|c 450829162
|x 1
536 _ _ |a Scalable solvers for linear systems and time-dependent problems (hwu12_20141101)
|0 G:(DE-Juel1)hwu12_20141101
|c hwu12_20141101
|x 2
|f Scalable solvers for linear systems and time-dependent problems
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Speck, R.
|0 P:(DE-Juel1)132268
|b 1
|u fzj
700 1 _ |a Bolten, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Emmett, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ruprecht, D.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1137/14097536X
|g Vol. 37, no. 5, p. S244 - S263
|0 PERI:(DE-600)1468391-x
|n 5
|p S244 - S263
|t SIAM journal on scientific computing
|v 37
|y 2015
|x 0196-5204
856 4 _ |u https://juser.fz-juelich.de/record/278997/files/1407.6486v2.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/278997/files/1407.6486v2.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/278997/files/1407.6486v2.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/278997/files/1407.6486v2.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/278997/files/1407.6486v2.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/278997/files/1407.6486v2.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:278997
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132268
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SIAM J SCI COMPUT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21