001     278998
005     20210129221002.0
037 _ _ |a FZJ-2015-07168
041 _ _ |a English
100 1 _ |a Pütter, Sabine
|0 P:(DE-Juel1)142052
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 22nd International Colloquium on magnetic films and surfaces
|g ICMFS
|c Kraków
|d 2015-07-12 - 2015-07-17
|w Poland
245 _ _ |a Influence of the structural quality of Pt on the spin Hall magnetoresistance in Pt/YIG hybrids
260 _ _ |c 2015
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1449578227_18276
|2 PUB:(DE-HGF)
|x After Call
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a For the generation and detection of pure spin currents via the (inverse) spin Hall effect, a combination of a non-ferromagnetic metal and an insulating ferrimagnet is used. Thin films of platinum (Pt) grown on yttrium iron garnet (Y3Fe5O12, YIG) often serve as prototype structures [1-3]. Recently, the influence of the interface quality between the two materials on the spin Hall effect came into focus and the importance of a surface treatment of YIG was discussed [3-7]. We present a systematic study of Pt thin film growth on YIG single crystals. The YIG crystals were exposed to different surface treatments prior to the Pt deposition. Pt thin films were grown under UHV conditions at different substrate temperatures by thermal evaporation utilizing the JCNS molecular beam epitaxy system which is also open to users in the framework of neutron experiments performed at the MLZ (www.mlz-garching.de). Surface science methods like in-situ Auger-electron-spectroscopy, reflection high/low energy electron diffraction, ex-situ x-ray reflectivity and atomic force microscopy were utilized for sample quality control. The spin Hall magnetoresistance is characterized via magnetization orientation dependent resistance measurements in a superconducting magnet cryostat. Best Pt growth results are achieved when the YIG substrate is annealed prior to thin film growth. Growth at room temperature yields higher film roughness while at higher temperatures the risk of Pt oxidation increases. At about 900°C substrate temperature interdiffusion takes place. Optimum Pt thin film growth is found at about 500°C where a texture of the Pt film is observed. In our presentation we discuss the influence of the YIG crystal surface treatment and different growth parameters on the quality of the Pt films in detail and address their impact on the spin Hall magnetoresistance effect.References[1] Sun Y., Chang H., Kabatek M., Song Y.-Y., Wang Z. et al., Phys. Rev. Lett. 111, 106601 (2013)[2] Nakayama H., Althammer M., Chen Y.-T., Uchida K., Kajiwara Y., et al., Phys. Rev. Lett. 110, 206601 (2013).[3] Weiler M., Althammer M., Czeschka F. D., Huebl H., Wagner M. S. et al., Phys. Rev. Lett. 108, 106602 (2012).[4] Czeschka F. D., Dreher L., Brandt M. S., Weiler M., Althammer M. et al., Phys. Rev. Lett. 107, 046601 (2011).[5] Jungfleisch M. B., Lauer V., Neb R., Chumak A. V., and Hillebrands B., Appl. Phys. Lett. 103, 022411 (2013).[6] Qiu Z., Ando K., Uchida K., Kajiwara Y., Takahashi R. et al., Appl. Phys. Lett. 103, 09404 (2013).[7] Aqeel A., Vera-Marun I. J., van Wees B. M., and Palstra T. T. M., J. Appl. Phys. 116, 15703 (2014).
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 1
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 2
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 3
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 1
650 1 7 |a Key Technologies
|0 V:(DE-MLZ)GC-150-1
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Geprägs, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Goennenwein, S. T. B.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gross, R.
|0 P:(DE-HGF)0
|b 3
856 4 _ |u http://www.icmfs2015.agh.edu.pl
909 C O |o oai:juser.fz-juelich.de:278998
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)142052
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 2
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21