000279002 001__ 279002
000279002 005__ 20240619091155.0
000279002 037__ $$aFZJ-2015-07172
000279002 041__ $$aEnglish
000279002 1001_ $$0P:(DE-Juel1)159236$$aSchiavone, Maria Maddalena$$b0$$eCorresponding author$$ufzj
000279002 1112_ $$aEuropean Polymer Congress 2015$$cDresden$$d2015-06-21 - 2015-06-26$$gEPF2015$$wGermany
000279002 245__ $$aMicrostructural characterization of PEMs based on sulfonated syndiotactic polystyrene in the delta-clathrate and gamma phases
000279002 260__ $$c2015
000279002 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1449578784_18276$$xOther
000279002 3367_ $$033$$2EndNote$$aConference Paper
000279002 3367_ $$2DataCite$$aOther
000279002 3367_ $$2ORCID$$aLECTURE_SPEECH
000279002 3367_ $$2DRIVER$$aconferenceObject
000279002 3367_ $$2BibTeX$$aINPROCEEDINGS
000279002 520__ $$aSyndiotactic polystyrene (s-PS) is able to form different kinds of co-crystalline phases with guest molecules of various size, shape and property. Several advanced materials have been produced starting from s-PS co-crystalline films [1-2]. In particular, sulfonated s-PS (s-SPS) can be used as proton-conductive membrane for fuel cells, as it presents high proton conductivity (comparable with Nafion). Besides, it shows a high chemical and thermo-mechanical stability and a low cost [3]. The morphology of different s-PS clathrates and the structural behavior of s-SPS upon hydration can be more thoroughly understood by combining X-rays scattering and FT-IR with SANS [4]. In fact, exploiting the neutron contrast variation between various hydrogenated and deuterated components of s-PS and s-SPS clathrates, additional and unique information about the distribution of guest molecules in the crystalline and amorphous regions and about the hydrated domains of the polymer were obtained. Moreover, the stretching of films leads to occurrence and distribution of scattering features from typical morphologies on specific directions and sectors of detection plan, which enables an accurate structural study of such complex polymeric systems. A complete SANS investigation on s-PS samples, starting from their crystallization with guest molecules to the subsequent sulfonation and hydration, was performed at SANS diffractometer KWS2 of MLZ. This experimental analysis has highlighted that the morphology of these polymeric films is characterized by hydrated channels in the amorphous phase alternated to staples of crystalline lamellae, along the stretching direction.[1].	J. Schellenberg in “Syndiotactic Polystyrene’’, John Wiley & Sons, Inc. 2010. [2].	G. Guerra et al., J. of Pol. Sci. B, Polymer Physics 2012, 50, 305.[3].	G. Fasano et al., Int. Journal. of Hydrogen Energy 2013, 36, 8038.[4].	F. Kaneko et al., Polymer 2013, 54, 3145 and Chemistry Letters, 2015, Accepted.
000279002 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000279002 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x1
000279002 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000279002 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000279002 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000279002 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000279002 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000279002 693__ $$0EXP:(DE-MLZ)PGAA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PGAA-20140101$$6EXP:(DE-MLZ)NL4b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePGAA: Prompt gamma activation analysis$$fNL4b$$x1
000279002 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b1$$ufzj
000279002 7001_ $$0P:(DE-HGF)0$$aTarallo, O$$b2
000279002 7001_ $$0P:(DE-HGF)0$$aDi Girolamo, R.$$b3
000279002 7001_ $$0P:(DE-HGF)0$$aCaporaso, L.$$b4
000279002 7001_ $$0P:(DE-HGF)0$$aRevay, Z.$$b5
000279002 7001_ $$0P:(DE-Juel1)130917$$aRichter, Dieter$$b6$$ufzj
000279002 909CO $$ooai:juser.fz-juelich.de:279002$$pVDB$$pVDB:MLZ
000279002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159236$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130917$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000279002 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000279002 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000279002 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000279002 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000279002 9141_ $$y2015
000279002 920__ $$lyes
000279002 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000279002 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000279002 980__ $$aconf
000279002 980__ $$aVDB
000279002 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000279002 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000279002 980__ $$aUNRESTRICTED