000279005 001__ 279005
000279005 005__ 20240619091155.0
000279005 037__ $$aFZJ-2015-07175
000279005 041__ $$aEnglish
000279005 1001_ $$0P:(DE-Juel1)159236$$aSchiavone, Maria Maddalena$$b0$$eCorresponding author$$ufzj
000279005 1112_ $$aNeutron Scattering on Nano-Structured Soft Matter:  Synthetic- and Bio-Materials$$cTutzing$$d2015-10-05 - 2015-10-08$$gJCNS Workshop 2015$$wGermany
000279005 245__ $$aMicrostructure of polymer electrolyte membranes based on sulfonated syndiotactic polystyrene in the delta clathrate and gamma phases
000279005 260__ $$c2015
000279005 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1449578847_18273$$xOther
000279005 3367_ $$033$$2EndNote$$aConference Paper
000279005 3367_ $$2DataCite$$aOther
000279005 3367_ $$2ORCID$$aLECTURE_SPEECH
000279005 3367_ $$2DRIVER$$aconferenceObject
000279005 3367_ $$2BibTeX$$aINPROCEEDINGS
000279005 520__ $$aSyndiotactic polystyrene (sPS) is able to form different kinds of co-crystalline phases with guest molecules of various size, shape and property. Several advanced materials have been already produced starting from sPS co-crystalline films [1-2]. In particular, sulfonated sPS (ssPS) can be used as proton-conductive membrane for fuel cells, as it presents high proton conductivity (comparable with Nafion). As well, it shows a high chemical and thermo-mechanical stability and a low cost [3]. The morphology of different sPS clathrates and the structural behavior of ssPS upon hydration can be more thoroughly understood by combining X-rays scattering and FT-IR with SANS [4-5]. In fact, exploiting the neutron contrast variation between various hydrogenated and deuterated components of sPS and ssPS clathrates, additional and unique information about the distribution of guest molecules in the crystalline and amorphous regions and about the hydrated domains were obtained. Moreover, the SANS investigation of in-situ water absorption-desorption process in these membranes using a humidity chamber that enables to choose constant relative humidity RH over a wide range (between 5% and 95%) emphasizes that the hydration-drying processes involve both the interlamellar amorphous space and bulk amorphous.Therefore, the stretching of films leads to occurrence and distribution of scattering features from typical morphologies on specific directions and sectors of detection plan enables an accurate structural study of such complex polymeric systems. A complete SANS investigation on sPS samples, starting from their crystallization with guest molecules through sulfonation process followed by subsequent hydration, performed at SANS diffractometer KWS-2 of MLZ will be presented. This experimental analysis has highlighted that the morphology of these polymeric films is characterized by hydrated channels in the amorphous phase alternated to staples of crystalline lamellae, along the stretching direction.[1].	J. Schellenberg in “Syndiotactic Polystyrene’’, John Wiley & Sons, Inc. (2010). [2].	G. Guerra et al., J. of Pol. Sci. B, Polymer Physics, 50, 305 (2012).[3].	G. Fasano et al., Int. Journal. of Hydrogen Energy, 36, 8038 (2013).[4].	F. Kaneko et al., Polymer, 54, 3145 (2013).[5].	F. Kaneko et al., Chemistry Letters, 44, 497 (2015).
000279005 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000279005 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x1
000279005 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000279005 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000279005 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000279005 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000279005 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000279005 693__ $$0EXP:(DE-MLZ)PGAA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PGAA-20140101$$6EXP:(DE-MLZ)NL4b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePGAA: Prompt gamma activation analysis$$fNL4b$$x1
000279005 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b1$$ufzj
000279005 7001_ $$0P:(DE-HGF)0$$aTarallo, O.$$b2
000279005 7001_ $$0P:(DE-HGF)0$$aDi Girolamo, R.$$b3
000279005 7001_ $$0P:(DE-HGF)0$$aCaporaso, L.$$b4
000279005 7001_ $$0P:(DE-HGF)0$$aRevay, Z.$$b5
000279005 7001_ $$0P:(DE-HGF)0$$aKleszcz, K.$$b6
000279005 7001_ $$0P:(DE-Juel1)130917$$aRichter, Dieter$$b7$$ufzj
000279005 909CO $$ooai:juser.fz-juelich.de:279005$$pVDB$$pVDB:MLZ
000279005 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159236$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279005 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279005 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130917$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000279005 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000279005 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000279005 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000279005 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000279005 9141_ $$y2015
000279005 920__ $$lyes
000279005 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000279005 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000279005 980__ $$aconf
000279005 980__ $$aVDB
000279005 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000279005 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000279005 980__ $$aUNRESTRICTED