000279019 001__ 279019
000279019 005__ 20240708132654.0
000279019 037__ $$aFZJ-2015-07189
000279019 041__ $$aEnglish
000279019 1001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b0$$eCorresponding author
000279019 1112_ $$a66th Annual Meeting of the International Society of Electrochemistry$$cTaipei$$d2015-10-05 - 2015-10-09$$wTaiwan
000279019 245__ $$aManufacturing and Performance of solid-state thin-film batteries
000279019 260__ $$c2015
000279019 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1450106247_20491$$xAfter Call
000279019 3367_ $$033$$2EndNote$$aConference Paper
000279019 3367_ $$2DataCite$$aOther
000279019 3367_ $$2ORCID$$aLECTURE_SPEECH
000279019 3367_ $$2DRIVER$$aconferenceObject
000279019 3367_ $$2BibTeX$$aINPROCEEDINGS
000279019 520__ $$aThe combination of solid ceramic-like electrolytes with inorganic electrodes, thus creating an all solid-state battery, requires a sophisticated co-processing, taking into account the different chemical and thermal stability of the applied materials. Thin-film batteries allow – on the one hand – a detailed analysis of the compatibility of active storage material and the electrolyte because of dense layer morphology (ideal case) and well-defined planar interfaces. On the other hand, thin-film batteries also have the potential for energy storage solutions in applications with short-term or low power consumption. Optionally, a stacking of active thin layers can increase the energy content. In general, the deposition and crystallization of a functional layer for solid-state battery cells requires a heat incidence that can lead to an undesired and detrimental diffusion of constituents into the substrate or into adjacent components, to mechanical stresses and resulting cracks due to different coefficients of thermal expansion, or even to a decomposition of parts of the battery. The purpose of this work is a comparison of different materials, Lithium-oxynitride (LiPON) based and Lithium-Lanthanum-Zirconium-oxide (LLZ) based electrolyte materials, and different thin-film deposition processes (for example physical vapor deposition, spin-coating, dip-coating, ink-jet-printing) that are applied to thin-film solid-state battery cells, and their impact on the microstructure, the inter diffusion and, as a result, on the performance of the cells. Analysis was done, among others, by high-resolution scanning electron microscopy, secondary ion mass spectrometry, nuclear reaction analysis, Rutherford backscattering, electrochemical impedance spectroscopy, galvanostatic charge-discharge measurements and cyclic voltammetry.As an outlook, the economic feasibility of thin-film deposition technologies like physical vapor deposition is discussed.
000279019 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000279019 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000279019 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000279019 7001_ $$0P:(DE-Juel1)162280$$aGehrke, Hans-Gregor$$b1
000279019 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b2
000279019 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b3
000279019 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b4
000279019 7001_ $$0P:(DE-Juel1)145805$$aBünting, Aiko$$b5
000279019 7001_ $$0P:(DE-Juel1)140492$$aBitzer, Martin$$b6
000279019 7001_ $$0P:(DE-Juel1)129189$$aDornseiffer, Jürgen$$b7
000279019 7001_ $$0P:(DE-Juel1)129669$$aVan Gestel, Tim$$b8
000279019 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b9
000279019 909CO $$ooai:juser.fz-juelich.de:279019$$pVDB
000279019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162280$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000279019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000279019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145805$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000279019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140492$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000279019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129189$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000279019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129669$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000279019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000279019 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000279019 9141_ $$y2015
000279019 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000279019 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000279019 980__ $$aconf
000279019 980__ $$aVDB
000279019 980__ $$aI:(DE-Juel1)IEK-1-20101013
000279019 980__ $$aI:(DE-82)080011_20140620
000279019 980__ $$aUNRESTRICTED
000279019 981__ $$aI:(DE-Juel1)IMD-2-20101013