001     279019
005     20240708132654.0
037 _ _ |a FZJ-2015-07189
041 _ _ |a English
100 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 0
|e Corresponding author
111 2 _ |a 66th Annual Meeting of the International Society of Electrochemistry
|c Taipei
|d 2015-10-05 - 2015-10-09
|w Taiwan
245 _ _ |a Manufacturing and Performance of solid-state thin-film batteries
260 _ _ |c 2015
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1450106247_20491
|2 PUB:(DE-HGF)
|x After Call
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a The combination of solid ceramic-like electrolytes with inorganic electrodes, thus creating an all solid-state battery, requires a sophisticated co-processing, taking into account the different chemical and thermal stability of the applied materials. Thin-film batteries allow – on the one hand – a detailed analysis of the compatibility of active storage material and the electrolyte because of dense layer morphology (ideal case) and well-defined planar interfaces. On the other hand, thin-film batteries also have the potential for energy storage solutions in applications with short-term or low power consumption. Optionally, a stacking of active thin layers can increase the energy content. In general, the deposition and crystallization of a functional layer for solid-state battery cells requires a heat incidence that can lead to an undesired and detrimental diffusion of constituents into the substrate or into adjacent components, to mechanical stresses and resulting cracks due to different coefficients of thermal expansion, or even to a decomposition of parts of the battery. The purpose of this work is a comparison of different materials, Lithium-oxynitride (LiPON) based and Lithium-Lanthanum-Zirconium-oxide (LLZ) based electrolyte materials, and different thin-film deposition processes (for example physical vapor deposition, spin-coating, dip-coating, ink-jet-printing) that are applied to thin-film solid-state battery cells, and their impact on the microstructure, the inter diffusion and, as a result, on the performance of the cells. Analysis was done, among others, by high-resolution scanning electron microscopy, secondary ion mass spectrometry, nuclear reaction analysis, Rutherford backscattering, electrochemical impedance spectroscopy, galvanostatic charge-discharge measurements and cyclic voltammetry.As an outlook, the economic feasibility of thin-film deposition technologies like physical vapor deposition is discussed.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
700 1 _ |a Gehrke, Hans-Gregor
|0 P:(DE-Juel1)162280
|b 1
700 1 _ |a Lobe, Sandra
|0 P:(DE-Juel1)161444
|b 2
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 3
700 1 _ |a Dellen, Christian
|0 P:(DE-Juel1)158085
|b 4
700 1 _ |a Bünting, Aiko
|0 P:(DE-Juel1)145805
|b 5
700 1 _ |a Bitzer, Martin
|0 P:(DE-Juel1)140492
|b 6
700 1 _ |a Dornseiffer, Jürgen
|0 P:(DE-Juel1)129189
|b 7
700 1 _ |a Van Gestel, Tim
|0 P:(DE-Juel1)129669
|b 8
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 9
909 C O |o oai:juser.fz-juelich.de:279019
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162280
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161444
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)158085
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145805
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)140492
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129189
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129669
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21