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We present a methodology to calculate frequency and momentum dependent all-electron response functions

determined within Kohn-Sham density functional theory. It overcomes the main obstacle in calculating response

functions in practice, which is the slow convergence with respect to the number of unoccupied states and the

basis-set size. In this approach, the usual sum-over-states expression of perturbation theory is complemented by

the response of the orbital basis functions, explicitly constructed by radial integrations of frequency-dependent

Sternheimer equations. To an essential extent an infinite number of unoccupied states are included in this way.

Furthermore, the response of the core electrons is treated virtually exactly, which is out of reach otherwise. The

method is an extension of the recently introduced incomplete-basis-set correction (IBC) [Betzinger et al., Phys.

Rev. B 85, 245124 (2012); 88, 075130 (2013)] to the frequency and momentum domain. We have implemented the

generalized IBC within the all-electron full-potential linearized augmented-plane-wave method and demonstrate

for rocksalt BaO the improved convergence of the dynamical Kohn-Sham polarizability. We apply this technique

to compute (a) quasiparticle energies employing the COHSEX approximation for the self-energy of many-body

perturbation theory and (b) all-electron RPA correlation energies. It is shown that the favorable convergence of

the polarizability is passed over to the COHSEX and RPA calculation.

DOI: 10.1103/PhysRevB.92.245101 PACS number(s): 71.15.Mb, 71.15.Ap

I. INTRODUCTION

Response functions play an important role in condensed

matter theory. They describe how a many-electron system

reacts to an external perturbation. For example, a perturbing

electric field leads to a rearrangement of the electronic

charge giving rise to polarization and screening effects.

Likewise, a perturbing magnetic field may induce changes

in the magnetization density. The perturbation can be caused

by an incoming beam of particles, e.g., photons, electrons,

and neutrons. Response functions, thus, determine the spec-

troscopic properties of the material. Furthermore, they are

central ingredients in electronic structure methods that go

beyond standard Kohn-Sham (KS) density-functional theory

(DFT) [1,2]. For example, the GW approximation [3–5] for

the electronic self-energy as well as the electronic correlation

energy within the adiabatic-connection fluctuation-dissipation

theorem (ACFDT) [6,7] using the random-phase approxima-

tion (RPA) [8–10] require the calculation of the microscopic

polarizability in its most general form, i.e., with full frequency

and momentum dependence.

In practice, the main obstacle in calculating the polarizabil-

ity is the slow convergence with respect to the basis-set size and

the number of unoccupied states. It formally involves a sum

over the infinite number of unoccupied states. In a practical

calculation, of course, only a finite number N of states is

available, which becomes a convergence parameter. In recent

years, several approaches have been proposed to accelerate

the convergence. The extra-polar approximation [11] replaces

the unknown energies of all bands above the N th band

by a constant parameter, which allows the sum to collapse

over the unknown bands, an approach that is also known
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as common-energy-denominator approximation (CEDA) [12]

or localized Hartree-Fock method [13] in the context of

the optimized-effective-potential (OEP) method [14,15]. This

approach is easy to implement, but it is not parameter-free and

often still shows slow convergence with respect to N. Berger

et al. [16,17] replaced the energies of the unoccupied states,

instead, by an effective-energy function, which is independent

of the band index, again allowing the infinite sum to convert to

a finite one. However, while in principle exact and parameter-

free, the exact form of this function is not known and must be

approximated. It turns out that improving the approximations

quickly becomes unwieldy. As an alternative, the solution

to the differential Sternheimer equation [18] in a basis set

formally gives the same result as the summation over the

unoccupied states, thereby avoiding the explicit summation.

However, since the solution is sought in the space spanned by

the orbital basis set, the slow convergence with respect to the

basis-set size remains.

In two recent papers, Refs. [19] and [20], we developed

an incomplete-basis-set correction (IBC) for computing the

static polarizability, numerically realized in the all-electron

full-potential linearized augmented-plane-wave (FLAPW)

method [21–24]. The IBC solves the aforementioned prob-

lems. It does not rely on adjustable parameters or additional

approximations and captures response contributions that lie

outside the space spanned by the basis set. It can be pictured as

a combination of the usual sum-over-states (SOS) expression

of Rayleigh-Schrödinger perturbation theory and a basis-

response term constructed from pointwise solutions to an

“atomic” Sternheimer equation. The latter incorporates the

contribution of the infinitely many states that are not contained

in the finite SOS. Similar ideas have been formulated by

Savrasov in Ref. [25] for the linear muffin-tin orbital (LMTO)

method [26,27]. In addition, the IBC comprises a Pulay term

(named after a formally similar expression used in atomic
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force calculations [28]), which corrects for deviations of the

calculated eigenfunctions from the exact pointwise solutions

of the KS equation. In the derivation of the IBC, we exploit the

fact that all-electron methods usually employ basis functions

that are adjusted to the effective potential and therefore

already represent approximate solutions to the underlying KS

equation. In the FLAPW method, these functions are defined

inside the muffin-tin spheres centered around the atoms.

Their response to a perturbation of the effective potential

can be obtained by integrating the corresponding differential

radial Sternheimer equation. We demonstrated [19,20] that

the IBC significantly accelerates the convergence of the static

polarizability in terms of both basis-set size and the number of

unoccupied states.

In this paper, we extend the IBC to frequency and

momentum dependent perturbations (Sec. II A) and apply

it to the dynamical polarizability (Sec. II B). The improved

convergence behavior is demonstrated for rocksalt barium

oxide (Sec. II C). We will see that the generalized IBC enables

the calculation of highly accurate dynamical polarizabilities

already with a minimal LAPW basis set. The resulting

polarizabilities are then employed to compute two different

properties: (a) quasiparticle energies within the COHSEX

approximation for the self-energy and (b) the all-electron RPA

correlation energy of BaO (Sec. III).

II. INCOMPLETE BASIS-SET CORRECTION

This section is devoted to the development of the IBC

for frequency and momentum dependent perturbations. The

resulting equations are formally similar to the ones derived

in Refs. [19] and [20] for the static case. Therefore, we

recapitulate the derivation of the IBC in Sec. II A and focus

specifically on the points where the mathematical formulation

has to be modified to allow for the more general case. We

emphasize here the conceptual idea and discuss the IBC in

an intuitive manner. A detailed derivation starting from the

single-particle KS equations is presented in Appendix A.

Since the core states are confined to the muffin-tin (MT)

spheres and calculated in terms of a spherically symmetric

effective potential, the IBC enables an exact treatment of

their contribution to the polarizability, which is shown in

Appendix B. Section II B uses the results to define a corrected

frequency and momentum dependent polarizability. We then

analyze the improved convergence behavior in Sec. II C. When

referring to equations of our previous papers [19] or [20] we

use a prime (′) or a double prime (′′), respectively. Unless

otherwise noted, we employ the same notation, definitions,

and units (i.e., Hartree atomic units). For simplicity, the spin

index is suppressed, and we restrict the derivation to the

nonrelativistic case. The numerical implementation, however,

uses the corresponding scalar-relativistic equations.

A. Generalization

The polarizability describes the linear response of the

electron density to perturbations of the KS effective potential.

We use the functions MI (r) of the mixed product basis

(MPB) [29–32] as a basis set for the spatial part of the perturba-

tions. The MT MPB functions are given as a product of a radial

part and a spherical harmonic MI (r) = MI (r)YLM (r̂) with the

index I = (a,P,L,M), where a is the atomic index and P

distinguishes between different radial functions Ma
PL(r).

We consider a time-dependent perturbation of the form

MI (r)e−iωt and write the linear response of the KS single-

particle wave functions ϕnk(r) as ϕ
(1)
nk,I (r,ω)e−iωt , showing the

same time dependence as the perturbing field. Since the density

is written in terms of the ϕnk(r), it is this response that we deal

with in the following.

When representing ϕnk(r) =
∑

G zG(n,k)φkG(r) in terms

of the LAPW basis {φkG(r)}

φkG(r) =

{

exp[i(k + G) · r]/
√

� if r ∈ IR
∑

lm

∑1
p=0 Aa

lmp(k,G)ua
lmp(ra) if r ∈ MT(a),

(1)

[� denotes the volume of the unit cell, Aa
lmp(k,G) are the

matching coefficients and ra is the position vector relative

to the MT sphere center of atom a] differentiating with

respect to the potential formally produces one term where

the basis functions themselves are differentiated. Through the

augmentation functions ua
lmp(r) = ua

lp(r)Ylm(r̂) defined by

ha
l rua

l0(r) = ǫa
l rua

l0(r) (2)

for p = 0 and

ha
l rua

l1(r) = ǫa
l rua

l1(r) + rua
l0(r) (3)

for p = 1, where ǫa
l is a predefined energy parameter and

ha
l denotes the radial Hamiltonian ha

l = − 1
2

∂2

∂r2 + l(l+1)

2r2 +
V a

eff,0(r), the LAPW basis functions do depend on the spher-

ically averaged effective potential V a
eff,0(r). We can, thus,

formally define a response

u
a(1)
lmp,I (r,ω) =

∑

l′m′

u
a(1)
lmp,I,l′m′(r,ω)Yl′m′(r̂) , (4)

extending the definition of Eq. (1′′) by the frequency of the

perturbation. For a purely spherical perturbation (L = 0), the

response remains in the same lm channel: l′ = l,m′ = m. A

nonspherical perturbation (L > 0), on the other hand, can

create response contributions in other (in general more than

one) l′m′ channels. Using time-dependent perturbation theory

for degenerate states, the radial parts for p = 0 and p = 1 can

be shown to obey the inhomogeneous equations
[

ha
l′ − ǫa

l − ω
]

ru
a(1)
lm0,I,l′m′(r,ω)

= GMm′m
Ll′l

[

δll′ǫ
a(1)
l,I − MI (r)

]

rua
l0(r) (5)

and
[

ha
l′ − ǫa

l − ω
]

ru
a(1)
lm1,I,l′m′ (r,ω)

= GMm′m
Ll′l

[

δll′ǫ
a(1)
l,I − MI (r)

]

rua
l1(r) + ru

a(1)
lm0,I,l′m′(r,ω),

(6)

reproducing Eqs. (2′′) and (3′′) in the limit ω → 0. The

linear change ǫ
a(1)
l,I of the energy parameter ǫa

l is given by

〈ua
l0|MI |ua

l0〉. We see that it is the Gaunt coefficient GMm′m
Ll′l =

∫

YLM (r̂)Y ∗
l′m′ (r̂)Ylm(r̂)d� that couples the LM channel of the

perturbation and the lm channel of the perturbed function with

the resulting l′m′ channel of the response. Due to the selection
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rules of the Gaunt coefficients, many of the terms in Eq. (4)

vanish [20]. Furthermore, it is possible to solve the linear

differential equations independently of m,m′, and M and

subsequently simply scale the solutions by the corresponding

factor GMm′m
Ll′l .

In essence, Eq. (5) is the Sternheimer equation for an atomic

(i.e., spherically symmetric) problem, except for the fact that

the radial functions are defined only for r � Sa with the MT

sphere radius Sa (no atomic boundary condition). In this sense,

we can interpret u
a(1)
lm0,I,l′m′(r,ω) as an “atomic solution” that

takes care of the rapid variations inside the MT spheres, which

cannot be captured in practice by the usual SOS expression.

We will later combine this atomic solution with the SOS and in

this way introduce the necessary periodic boundary condition.

The differential equations above do not determine the

response u
a(1)
lmp,I,l′m′(r,ω) uniquely since we may always add

a multiple of the homogeneous solution
[

ha
l′ − ǫa

l − ω
]

ru
a,hom
l,l′ (r,ω) = 0 . (7)

In the previous publications, we have fixed this arbitrariness

by an orthogonality condition. We have found this definition to

work well in the static case but not so for ω 	= 0, in particular

for large ω. We therefore revert to another condition, namely

that the response (and its gradient) should be continuous

throughout space. Since the LAPW basis functions do not

depend on the effective potential in the interstitial region,

this means that the response should go to zero in value and

slope at the MT sphere boundary. This condition, in fact,

results naturally if we differentiate the matching coefficients

Aa
l′m′p(k,G) as part of the functional derivative of Eq. (1),

which produces terms that contain the functions ua
l′p(r) (p =

0,1). Hence, we have the freedom in three coefficients

ũ
a(1)
lmp,I,l′m′ (r,ω) = u

a(1)
lmp,I,l′m′(r,ω) + αu

a,hom
l,l′ (r,ω)

+βua
l′0(r) + γ ua

l′1(r) (8)

but only two conditions ũ
a(1)
lmp,I,l′m′(Sa,ω) = ũ

a(1)′
lmp,I,l′m′(Sa,ω) =

0. We resolve this ambiguity with the choice γ = 0. This

choice leads to stable results up to very large imaginary

frequencies and to a fast band convergence (see results below).

As a rationale, note that for small ω the three radial functions

u
a,hom
l′,l (r,ω), ua

l′0(r), ua
l′1(r) are practically linearly dependent.

In fact, it can be shown that the definition of Ref. [20] is

recovered in the static limit. So far, we have only discussed

the augmented plane waves of the LAPW basis set. For

local orbitals (p � 2) [33–36], we basically use the same

construction principle employing the solution of Eq. (5), now

with the energy parameter ǫa
lp 	= ǫa

l of the local orbital.

The generalization to momentum dependent perturbations

is straightforward. For a perturbation restricted to the MT

sphere, the momentum dependence can be considered by a

simple phase factor eiq·R with the momentum vector q and the

position vector R that points to the respective MT center. This

corresponds to the definition of the q dependent MT functions

M
q

I (r) of the MPB [29–32]. The response simply acquires the

same phase factor so that, as a result, we can write the response

of a basis function φkG(r) as

φ
(1)
kG,Iq(r,ω) = ei(k+q)·R

∑

lmp

Aa
lmp(k,G) (9)

×
∑

l′m′

ũ
a(1)
lmp,I,l′m′ (|r − R|,ω)Yl′m′ (r̂ − R)

for r pointing into the MT sphere centered at R. In the intersti-

tial region the response of the basis is zero. For local orbitals,

an analogous formula is used with the local-orbital index

replacing G. Linear combination with the wave-function co-

efficients yields ϕ̃
(1)
nk,Iq(r,ω) =

∑

G zG(n,k)φ
(1)
kG,Iq(r,ω). Just

as Eq. (9), this is a Bloch function with wave vector k + q,

showing that a wave function at k is scattered into k + q by a

q-like perturbation. With ϕ̃
(1)
nk,Iq(r,ω) as a first approximation

to the response of the wave function and using time-dependent

Rayleigh-Schrödinger perturbation theory only for the remain-

der yields a result that is formally similar to the one derived in

Ref. [19],

ϕ
(1)
nk,Iq(r,ω) =

∑

n′�N

〈ϕn′k+q|Mq

I |ϕnk〉
ǫnk − ǫn′k+q + ω

ϕn′k+q(r) +
∫

d3r ′

[

δ(r − r′) −
∑

n′�N

ϕn′k+q(r)ϕ∗
n′k+q(r′)

]

ϕ̃
(1)
nk,Iq(r′,ω)

+
∑

n′�N

〈ϕn′k+q|H − ǫn′k+q|ϕ̃(1)
nk,Iq(ω)〉

ǫnk − ǫn′k+q + ω
ϕn′k+q(r) , (10)

where H is the single-particle KS Hamiltonian. In particular,

we can identify several terms that we already know from

the static, q independent case: the usual SOS expression of

text-book perturbation theory, the basis-response (BR) term,

and the Pulay term. It is easy to verify that the last two terms

vanish in the limit of an infinite, complete basis, in which case

the SOS term would yield the exact result. In the practical

case of a finite, incomplete basis set, the BR term specifically

adds response contributions that lie outside the Hilbert space

spanned by the basis set or, in fact, the set of the calculated

eigenfunctions of H , which can be smaller than the basis set.

These contributions come mainly from the infinite number of

states that are not included in the SOS term. The sum over n′

in the BR term can also be interpreted as a double-counting

correction that projects out that part of the response that is

already treated by the first term. The Pulay term constitutes a

correction for the SOS term that arises because the calculated

eigenfunctions of H in general deviate from the true physical

eigenstates due to the incompleteness of the basis set.1 We

want to stress at this point that Eq. (10) is independent of

1We note that there is a second Pulay term for the state ϕnk, which

is, however, negligibly small for an occupied state ϕnk.
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the specifics of the used basis set, which enter only in the

construction of ϕ̃
(1)
nk,Iq(r,ω), defined above in the framework

of the FLAPW method. We are sure that a similar construction

is possible in other basis sets, such as the linear muffin-tin

orbital (LMTO) [26,27] or the projector augmented-wave

(PAW) [37,38] method. In this sense, the IBC appears as a

rather general method that has different realizations in different

approaches.

Unlike what is suggested by the name incomplete-basis-set

correction, we also obtain an accurate description of the linear

response of the core states, which, in the FLAPW method,

are treated independently of the valence basis set. The core

states are calculated as eigensolutions of the relativistic Dirac

equation with atomic boundary conditions, retaining only the

spherical part of the effective potential. The energy eigenvalue

results from the requirement that the solution is regular at

the nucleus r → 0 and that it goes to zero for r→ ∞. In

the same manner as for the valence states, we can obtain the

core-state response as the solution of a perturbed Schrödinger

equation similar to Eq. (5), where we adopt a scalar-relativistic

approximation. Further details are discussed in Appendix B.

B. Polarizability

The polarizability gives the linear response of the electron

number density n(r) to perturbations of the effective potential

Veff(r). It can thus be defined as the functional derivative

χs(r,r
′; ω) =

δn(r,ω)

δVeff(r′,ω)
, (11)

where we have used a frequency dependent formulation. Due

to the time independence of the unperturbed Hamiltonian the

linear response exhibits the same frequency as the perturbing

field. Representing the polarizability in the MPB and using

n(r) = 2
∑

kn |ϕnk(r)|2, we can write Eq. (11) as

χs,IJ (q,ω) = 2

BZ
∑

k

occ.
∑

n

〈

M
q

I ϕnk

∣

∣ϕ
(1)
nk,Jq(ω) + ϕ

(1)
nk,Jq(−ω)

〉

,

(12)

where the factor 2 stems from the spin summation, and the

term containing −ω comes from the derivative of the complex

conjugate. The generalization to the spin-polarized case is

trivial. We note that the k summation should be understood

as an integration over the Brillouin zone (BZ). In practice,

the k-point set is finite and one uses an interpolation between

the points, e.g., the tetrahedron method [39]. In this case,

integration weight factors must be taken into account, which

we omit here for the sake of simplicity. Now, we replace

ϕ
(1)
nk,Jq(r,ω) by the right-hand side of Eq. (10) and obtain the

polarizability as the sum of three terms

χs,IJ (q,ω) = χSOS
s,IJ (q,ω) + χBR

s,IJ (q,ω) + χ
Pulay

s,IJ (q,ω) , (13)

which derive from the SOS, BR, and Pulay terms. The rather

lengthy formulas are explicitly given in Appendix C. The SOS

term corresponds to the usual Adler-Wiser expression for the

polarizability [40,41]; the other two are the IBC terms. The

contribution of the core states is included in the BR term. It

should be pointed out that the corrected formula for χs,IJ (q,ω)

is asymmetric in the indices I and J . This is evident from

Eq. (12), where the I th MPB function is projected from

the left, whereas the J th function enters the IBC-corrected

expression. The deviation from exact Hermiticity is usually

small. The correct symmetry is reestablished in the code

simply by an explicit symmetrization of the polarizability

matrix. The decomposition of Eq. (13) invites us to analyze

the convergence of the three terms separately. We will carry

out such an analysis in the next section.

C. Performance

We analyze the convergence of the polarizability in terms

of the basis-set size and the number of unoccupied states

for the example of rocksalt BaO. Barium oxide was chosen

as a prototypical ionic system with localized states (O2p

and semicore Ba5s and 5p). Localized states are known to

cause convergence problems in the conventional SOS approach

due to their slowly convergent Fourier series that allows

them to couple to energetically high-lying states [42]. As the

noninteracting reference system, we employ the solution of a

preceding DFT calculation with the PBE functional [43] for

the exchange-correlation potential and a lattice constant of

10.24 a0 (a0 is the Bohr radius). A reciprocal cutoff radius of

4.00 a−1
0 for the interstitial region and an angular momentum

cutoff of 10 in the MT spheres (of both elements with

SBa = SO = 2.49 a0) is employed. The Ba 5s and 5p semicore

states are described by local orbitals. For the auxiliary MPB

a reciprocal cutoff of 3.30 a−1
0 and an angular momentum

cutoff of 4 is used. The Brillouin zone is sampled by a

2 × 2 × 2 k-point set.

As a figure of merit for the accuracy of the polarizability

matrix χs,IJ (q,ω), we choose its trace (tr). The formalism so

far applies to real and complex frequencies ω alike. Since the

ACFDT-RPA correlation energy expression only involves the

imaginary frequency axis, we restrict ourselves to imaginary

frequencies in the following. Furthermore, we concentrate on

the valence contribution to the polarizability and leave out the

core contribution for the moment, which would merely lead to

a constant vertical shift of the curves.

The convergence of tr χs(q,ω) is analyzed in Fig. 1 with

respect to the basis-set size for the X point of the BZ,

q = (0.0,0.5,0.5) in internal coordinates, and three different

frequencies along the imaginary axis (which are integration

points of the Gauß quadrature). The size of the LAPW basis set

is controlled by mainly two parameters: the reciprocal cutoff

Gcut and the number nLO of additional sets of local orbitals.

Here, one set contains in total 72 functions of orbital character

s,p, . . ., h (l = 5) for the two atom types. While nLO = 0

corresponds to the conventional minimal LAPW basis for BaO

including the 5s and 5p semicore local orbitals amounting

to 276 basis functions, the basis with nLO = 6 contains 708

functions in total.

Figure 1 shows the expected result, namely that the

conventional SOS [(green) dashed curve] converges very

slowly with respect to nLO. The rate of convergence gets

even smaller the larger the absolute value of the frequency

is, revealing that this problem intensifies for the dynamical

polarizability. The curve corresponding to the BR term [(blue)

dotted curve] exhibits an equally slow but inverse convergence

towards zero, reflecting the improved completeness of the basis
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FIG. 1. (Color online) Trace of the polarizability matrix

χs,IJ (q,ω) for q = (0.0,0.5,0.5) and three different imaginary fre-

quencies as a function of the basis-set size, indicated by nLO; 276 and

708 basis functions for nLO = 0 and 6, respectively. The SOS part is

shown as a (green) dashed curve and the BR and Pulay terms as (blue)

dashed and (orange) dot-dashed curves, respectively. The sum of the

three contributions is the IBC result and is shown as the (red) solid

line. The insets show the IBC-corrected curve on a finer scale [(red)

pluses], additionally for Gcut = 4.40 a−1
0 [(turquoise) open circles]

and 4.80 a−1
0 [(magenta) filled triangles].

set with increasing nLO. When comparing the curves for the

three frequencies, we observe that the BR term takes over

more and more of the response for larger frequencies and,
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FIG. 2. (Color online) Convergence of the trace of χs,IJ (q,ω)

for q = (0.0,0.5,0.5) and three different imaginary frequencies

with respect to the number of unoccupied states, for two basis

sets containing 276 (nLO = 0, circles) and 708 functions (nLO = 6,

squares), respectively. Green open symbols correspond to the SOS,

blue filled symbols to the BR, and orange half-filled symbols to

the Pulay term. The sum, given as red open symbols, shows rapid

convergence independently of the chosen basis set.

thus, compensates for the slow convergence of the SOS. The

Pulay term [(orange) dot-dashed curve] gives a relatively small

contribution, but still an important one for the conventional
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basis set (nLO = 0), in particular for small frequencies. Adding

up all three contributions yields the red curve, which is nearly

a constant on the scale of the graph. The variation between

nLO = 0 and nLO = 6 lies below 1.5% as can be seen in the

insets, where we also show the convergence of tr χs,IJ (q,ω)

with respect to the reciprocal cutoff Gcut. Increasing Gcut to

4.40 a−1
0 and 4.80 a−1

0 changes the curves only marginally. In

conclusion, the IBC enables a calculation of the dynamical

polarizability that is by orders of magnitude more accurate

than with the conventional SOS expression. In particular, even

with the minimal LAPW basis set (nLO = 0), the polarizability

is converged to an accuracy that cannot be achieved with the

much larger nLO = 6 basis set without the IBC.

So far, we have included all eigenstates of the single-particle

Hamiltonian in the calculation of χs,IJ (q,ω) meaning that the

number N of states used in Eq. (10) is identical to the number

of basis functions. However, each of the terms in this equation

depends on N . The dependence is such that the omission of

bands in the SOS term will increase the BR term because a

smaller portion of ϕ̃
(1)
nk,Iq(r,ω) is projected out. One can hope

that the latter will compensate the omissions in the former so

that much fewer unoccupied states are needed for convergence.

This, in fact, works surprisingly well as we show in Fig. 2 for

the minimal (nLO = 0) and largest (nLO = 6) LAPW basis. The

figure demonstrates that the SOS term alone again converges

very slowly. We note that the calculation with nLO = 0 appears

to converge but to the wrong value. Adding BR and Pulay terms

to the SOS yields the curve formed by the (red) open circles and

squares, which exhibits a very rapid convergence with respect

to the unoccupied states. Interestingly, the converged value

hardly depends on the basis set used in contrast to what we find

for the conventional SOS calculation. The Pulay term is again

relatively small. However, for nLO = 0 and small frequencies

it does give a numerically important contribution that is crucial

in guaranteeing the basis-set independence of the converged

polarizability.

In the form of Eq. (13), the IBC is a noniterative correction.

The Pulay term gives rise to a substantial computational

overhead. Instead of calculating this term explicitly, it is often

a more efficient strategy to simply use one extra set of local

orbitals, i.e., nLO = 1, in which case the Pulay term reduces

to practically zero and does not have to be evaluated. The

BR term, on the other hand, can be implemented in a rather

efficient way that scales with the third power of the system

size. This has to be compared to the fourth power scaling of

the standard SOS term. Thus, with increasing system size the

relative computational effort for calculating the BR term will

decrease.

III. APPLICATIONS

The IBC, as derived in the last section, improves the

convergence of the polarizability considerably. Any method

that requires the knowledge of the polarizability will benefit

from the correction. In the previous papers, we have applied

the IBC to the optimized effective potential method [19,20,44],

in which only the ω → 0 and q → 0 limit is needed. In the

present paper, we have extended the formulation to momentum

and frequency dependent perturbations. As practical examples,

we apply the IBC to barium oxide to calculate (a) selected

electronic transition energies in the COHSEX approximation

for the self-energy and (b) the RPA correlation energy. While

for COHSEX only the static momentum-dependent IBC is

required, we need the polarizability with full momentum and

frequency dependence in the case of the RPA correlation

energy.

A. COHSEX

The COHSEX approximation is the static limit of the GW

self-energy [3–5]. It can be divided into a screened-exchange

(SEX) term 
SEX and a Coulomb-hole (COH) part 
COH:


SEX(r,r′) = −
occ.
∑

nk

ϕnk(r)W (r,r′; 0)ϕ∗
nk(r′) (14)


COH(r,r′) =
1

2
δ(r − r′)[W (r,r′; 0) − v(r,r′)] . (15)

Equation (14) has the same functional form as the Hartree-

Fock exchange term with the bare Coulomb interaction v(r,r′)
replaced by the static limit of the RPA screened Coulomb

interaction W (q) = [1 − v(q)χs(q)]−1v(q). The COH term

corresponds to half of the potential felt by an electron at r

caused by the Coulomb hole around it. We restrict ourselves to

first-order perturbation theory, in which the quasiparticle en-

ergies are given by ǫCOHSEX
nk = ǫDFT

nk + 〈ϕnk|
SEX + 
COH −
Vxc|ϕnk〉. The contribution of the core states is calculated on the

Hartree-Fock level as is common practice in GW calculations.

We use here the static limit of the GW self-energy, because

the latter would require, in addition to the IBC-corrected W ,

a corresponding correction for the Green function G, which

goes beyond the scope of the present study.

Barium oxide is a semiconductor with a direct band gap

at the X point of the Brillouin zone. In Table I, we show the

convergence of the direct band gap as well as the transition

energies from the valence-band maximum to the lowest

conduction states at Ŵ and L for different LAPW basis sets,

distinguished by nLO (for a definition of nLO see above). We

compare with the standard semilocal PBE functional [43] for

the exchange-correlation energy.

The PBE functional underestimates the band gap with

respect to experiment. Application of COHSEX opens the band

gap, but it overshoots. The calculated band gap is nearly 2 eV

larger than the experimental value. It is well known [45,46]

that COHSEX shows such a tendency. We observe that the

conventional calculations using the SOS exhibit a very slow

convergence. On the contrary, employing the IBC in the

calculation of W yields COHSEX transition energies that

converge as fast as in the PBE approach. In particular, the

small changes in the transition energies between nLO = 1

and nLO = 0 are merely a basis-set effect that is the same

order of magnitude in the two methods. Between nLO = 1 and

nLO = 6, the IBC-corrected COHSEX values are very stable;

they change by maximally 4 meV, while the uncorrected

values show variations that are a hundred times larger.

So far, we have restricted the IBC to response contributions

from the valence bands. However, as discussed above and in

more detail in Appendix B, the IBC allows us to treat the core-

state response in a very precise way. Interestingly, including the

core states affects the COHSEX transition energies relatively
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TABLE I. PBE and COHSEX band transition energies (in eV) for rocksalt BaO as a function of the basis-set size (parameter nLO) and

comparison to experiment. COHSEX energies are shown without (SOS) and with the IBC. The Brillouin zone is sampled by a 4 × 4 × 4 k-point

set.

X5′v → X3c X5′v → Ŵ1c X5′v → L2′c

PBE COHSEX@PBE PBE COHSEX@PBE PBE COHSEX@PBE

BaO SOS IBC SOS IBC SOS IBC

nLO = 0 1.808 4.401 6.017 4.239 6.699 8.162 5.044 7.873 8.766

nLO = 1 1.793 5.456 5.930 3.888 7.318 7.709 5.014 8.402 8.637

nLO = 2 1.793 5.777 5.927 3.881 7.585 7.709 5.012 8.564 8.635

nLO = 3 1.793 5.878 5.926 3.881 7.669 7.706 5.012 8.611 8.635

nLO = 4 1.793 5.906 5.926 3.880 7.693 7.706 5.012 8.625 8.635

nLO = 5 1.793 5.916 5.926 3.880 7.700 7.706 5.012 8.630 8.635

nLO = 6 1.793 5.920 5.926 3.880 7.704 7.706 5.012 8.632 8.635

Expt. 3.9a,4.1b

aReference [47].
bReference [48].

strongly. The direct band gap changes to 6.08 eV. For the

X5′v → Ŵ1c and X5′v → L2′c we obtain 7.46 eV and 8.72 eV,

respectively. We find that it is the COH term that is responsible

for these changes, while the SEX term is insensitive to the

response coming from the core states. This is reminiscent

of the fact that the COH term is known to overestimate the

contribution of high-lying bands [46], because it assumes

the energies of the relevant bands to be close to each other.

The same seems to hold for the core states; while they do give

a sizable response contribution, the COHSEX approximation

exaggerates the effect as it does not take the energy distance

between the core and valence states properly into account.

B. RPA correlation energy

Based on the ACFDT [6,7], the exchange-correlation

energy of KS DFT can be represented exactly in terms of the

dynamical polarizability of the interacting (scaled) electron

system. Applying the random-phase approximation (RPA) for

the interacting response then yields the RPA correlation energy

ERPA
c [n] =

1

2π

BZ
∑

q

∫ ∞

0

tr{ln[1 − v(q)χs(q,iω)]

+ v(q)χs(q,iω)}dω , (16)

where all quantities in the trace (tr) are understood as matrices:

the unit matrix 1 with the elements δIJ , the polarizability ma-

trix χs,IJ (q,iω) evaluated at the imaginary frequency iω, and

the matrix vIJ (q) representing the bare Coulomb interaction

in the MPB. Exploiting the invariance of the trace under cyclic

permutations, the matrix in the curly brackets can be replaced

by the symmetrized expression ln[1 − A(q,iω)] + A(q,iω)

with A(q,iω) = v1/2(q)χs(q,iω)v1/2(q), which allows us to

calculate the trace by
∑

j ln[1 − aj (q,iω)] + aj (q,iω) with

the eigenvalues aj (q,iω) of A(q,iω). Further details of the

implementation will be published elsewhere [49].

In Fig. 3, we show the convergence of the RPA correlation

energy for BaO. According to the band summation in Eq. (12),

we define a valence-only (i.e., n is restricted to the valence

states) and an all-electron (i.e., n runs over the core states

in addition) polarizability, which after insertion into Eq. (16)

yields a valence-only (left axis) and an all-electron (right axis)

RPA correlation energy. To see the effect of the IBC, we
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FIG. 3. (Color online) Convergence of the valence-only (left

axis) and all-electron (right axis) RPA correlation energy for BaO

with respect to (a) the basis-set size (parameter nLO) and (b) the

number of unoccupied states without (green dashed lines) and with

IBC (red solid line) for a LAPW basis with nLO = 6.
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also distinguish between a calculation without the correction

[i.e., using only the standard SOS term of Eq. (13)] and the

full expression including the BR and the Pulay terms. The

RPA correlation energy clearly benefits from the improved

convergence behavior of the polarizability when the IBC

is employed. While the valence correlation energy does

eventually converge when local orbitals are added to the

LAPW basis [Fig. 3(a)], this appears to be impossible for

the all-electron energy calculated with the SOS term alone.

It is clear that the latter is incapable of yielding the correct

contribution of the core states to the RPA correlation energy.

Even with the largest basis set (nLO = 6) it is off by a

factor. With the IBC, on the other hand, valence-only and

all-electron correlation energies are converged for all practical

purposes already with the conventional minimal LAPW basis,

convincingly shown by the near constancy of the solid line.

We also find again a very fast convergence with respect to the

number of unoccupied states shown in Fig. 3(b).

The contribution of the core electrons to the absolute cor-

relation energy is dominant. It amounts to about −4.5 Htr and

accounts for 83% of the all-electron RPA correlation energy of

BaO. Interestingly, this ratio is close to the percentage (75%)

of core electrons (48) to the total number of electrons (64), so

that each electron of the system, valence and core, seems to

contribute a comparable amount. This is not surprising if one

remembers that the leading term of the LDA correlation energy

(in the low-density limit) is an integral over n(r)4/3. The power

4/3 is reasonably close to 1, in which case the contribution per

occupied state would in fact be a constant. It is also known

from quantum chemical calculations that the core electrons

yield a substantial contribution to the correlation energy and

that it is not justified to neglect them when absolute energies

are needed [50].

IV. CONCLUSIONS

In this paper, we have presented a technique to compute

precise frequency and momentum dependent all-electron re-

sponse functions. It constitutes a generalization of the recently

introduced incomplete-basis-set correction (IBC) [19,20]. In

this approach, the response of the basis functions used to

represent the single-particle orbitals is explicitly constructed

by radial integration of frequency-dependent Sternheimer

equations and combined with the sum-over-states expres-

sion of standard perturbation theory. In this way, response

contributions that lie outside the Hilbert space spanned by

the original basis are taken into account. The total response

then consists of three terms: the sum-over-states expression

of conventional perturbation theory, a basis-response term,

and a Pulay term. While the basis-response term incorporates

to some extent an infinite number of states, the Pulay term

corrects for deviations of the single-particle wave functions

calculated in the finite orbital basis from the exact pointwise

solutions of the Hamiltonian.

We demonstrated within the all-electron FLAPW approach

that the IBC substantially improves the convergence of the

frequency- and momentum-dependent polarizability in terms

of both basis-set size and number of unoccupied states. A

highly converged response is already obtained with a minimal

LAPW basis set. With increasing frequency, we observed that

the IBC becomes even more important because the LAPW

basis turns out to be less and less adequate to describe

the dynamical response. In addition, the IBC enables a

virtually exact treatment of the core-electron response, which

is otherwise out of reach.

Any method that involves a response function directly

benefits from the IBC. For example, we have utilized the IBC

to compute quasiparticle energies of BaO in the COHSEX

approximation for the electronic self-energy, which requires

the momentum-dependent static polarizability. Thanks to the

IBC, the calculations exhibit a basis-set convergence that

is as fast as in DFT calculations using standard local or

semilocal exchange-correlation functionals. A combination of

the IBC with the recently published modified static remainder

approach [51] seems promising to improve the convergence

of GW calculations. While the modified static remainder

approach accelerates the convergence of G, the IBC addresses

the convergence of W .

As a second application, we have applied the IBC to

calculate the RPA correlation energy of BaO, whose central

ingredient is the frequency- and momentum-dependent po-

larizability. The favorable convergence of the polarizability

is directly transferred to the RPA correlation energy. We

showed that, when absolute correlation energies are needed,

the contribution of the core electrons is not negligible. In

fact, their individual contribution is comparable to that of

the valence electrons. The IBC thus paves the way for the

computation of truly all-electron RPA correlation energies.

The IBC, as formulated in the present paper, is applicable

foremost to electronic structure methods with an explicit

potential-dependent basis set, such as the LAPW or the LMTO

approach. However, we believe that similar corrections could

be constructed for other basis sets as well, most obviously for

pretabulated numeric atomic basis sets, but also for plane-wave

based methods, given that a plane wave is the eigenfunction

to the Schrödinger equation with a constant effective potential

and so, in this sense, also potential adjusted.
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APPENDIX A: GENERALIZATION TO

FREQUENCY-DEPENDENT PERTURBATIONS

In order to derive the IBC for frequency-dependent pertur-

bations we start from the time-dependent Schrödinger equation

for the one-particle orbital ϕn(r,t)

[i∂t − H ]ϕn(r,t) = 0 , (A1)

where the Hamiltonian H is assumed to be time independent

and n is a multi-index comprising a full set of quantum

numbers to uniquely specify the orbital. We assume that

the wave functions ϕn(r,t) are represented by a (explicit)
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time-independent basis set {φj (r)}

ϕn(r,t) =
∑

j

zj (n,t)φj (r) , (A2)

and that the basis functions φj (r) are adjusted to the potential

of the Hamiltonian H as is common practice in all-electron

electronic structure methods.

The expansion coefficients zj (n,t) then result from the

algebraic equation

∑

j

〈φk|i∂t − H |φj 〉zj (n,t) = 0 . (A3)

For the time-independent Hamiltonian H the time-dependent

expansion coefficients zj (n,t) are simply given by

zj (n,t) = zj (n) exp(−iǫnt), (A4)

where zj (n) denotes the eigenvector of the general eigenvalue

problem

∑

j

〈φk|ǫn − H |φj 〉zj (n) = 0 (A5)

with eigenvalue ǫn and overlap matrix 〈φk|φj 〉. The latter arises

from the nonorthogonality of the basis functions.

Subjecting the system to a time-dependent perturbation

W (t) will cause a change in the expansion coefficients zj (n,t),

and moreover the assumed potential dependence of the basis

functions φj (r) induces a time-dependent change of the basis.

Consequently, the first order change of the wave function

ϕ(1)
n (r,t) consists of two contributions

ϕ(1)
n (r,t) =

∑

j

z
(1)
j (n,t)φ

(0)
j (r) + z

(0)
j (n,t)φ

(1)
j (r,t) . (A6)

The superscript (0) and (1) distinguish between unperturbed

and perturbed quantities.

For a more compact notation of the wave-function response

we introduce the abbreviations

ϕ̂(1)
n (r,t) =

∑

j

z
(1)
j (n,t)φ

(0)
j (r) (A7)

ϕ̃(1)
n (r,t) =

∑

j

z
(0)
j (n,t)φ

(1)
j (r,t) , (A8)

which correspond to Eq. (24′). The exact form of the basis-

function response φ
(1)
j (r,t) depends of course on the specifics

of the underlying electronic structure method. For the moment,

however, we assume that the response of the basis functions

φ
(1)
j (r,t) is known and thereby ϕ̃(1)

n (r,t) is completely fixed.

The remaining unknown is the first-order change of the

expansion coefficient z
(1)
j (n,t), which we will determine in

the following.

Linearizing Eq. (A3) with respect to the potential and taking

into account the change of the expansion coefficient as well

as the change of the basis function according to Eq. (A6)

leads to the following set of equations for the coefficients

z
(1)
j (n,t):

[

i
〈

φ
(0)
k

∣

∣φ
(0)
j

〉

∂t −
〈

φ
(0)
k

∣

∣H
∣

∣φ
(0)
j

〉]

z
(1)
j (n,t)

=
[〈

φ
(0)
k

∣

∣W
∣

∣φ
(0)
j

〉

+
〈

φ
(0)
k

∣

∣H
∣

∣φ
(1)
j

〉

+
〈

φ
(1)
k

∣

∣H
∣

∣φ
(0)
j

〉]

z
(0)
j (n,t)

− i
[〈

φ
(1)
k

∣

∣φ
(0)
j

〉

+
〈

φ
(0)
k

∣

∣φ
(1)
j

〉]

∂tz
(0)
j (n,t)

− i z
(0)
j (n,t)

〈

φ
(0)
k

∣

∣∂tφ
(1)
j

〉

. (A9)

By Fourier transforming all time-dependent quantities to the

frequency domain, the set of coupled differential equations in

time turns into a set of algebraic equations
[(

ω + ǫ(0)
n

)〈

φ
(0)
k

∣

∣φ
(0)
j

〉

−
〈

φ
(0)
k

∣

∣H
∣

∣φ
(0)
j

〉]

z
(1)
j

(

n,ω + ǫ(0)
n

)

=
[〈

φ
(0)
k

∣

∣W (ω)
∣

∣φ
(0)
j

〉

+
〈

φ
(0)
k

∣

∣H − ǫ(0)
n

∣

∣φ
(1)
j (ω)

〉

+
〈

φ
(1)
k (−ω)

∣

∣H − ǫ(0)
n

∣

∣φ
(0)
j

〉

− ω
〈

φ
(0)
k

∣

∣φ
(1)
j

〉]

z
(0)
j (n),

(A10)

where we defined the Fourier transform of a generic time-

dependent function f (t) by

f (t) =
1

2π

∫ ∞

−∞
f (ω) exp[−iωt] dω . (A11)

This algebraic equation can be solved for the expansion

coefficients z
(1)
j (n,ω + ǫn) either by inversion of the matrix

(ω + ǫn)〈φ(0)
k |φ(0)

j 〉 − 〈φ(0)
k |H |φ(0)

j 〉 or by applying a basis

transformation to the wave functions {ϕ(0)
n′ } of the static

Hamiltonian H . Which of the two approaches is numerically

more advantageous depends on the number of basis functions

in comparison to the number of bands required to converge

the wave function response. In any case, it is quite instructive

to apply a basis transformation to the wave functions {ϕ(0)
n′ } of

the static Hamiltonian H which yields
〈

ϕ
(0)
n′

∣

∣ϕ̂(1)
n (ω + ǫn)〉

=
〈

ϕ
(0)
n′

∣

∣W (ω)
∣

∣ϕ(0)
n

〉

ǫ
(0)
n − ǫ

(0)
n′ + ω

+
〈

ϕ
(0)
n′

∣

∣H − ǫ
(0)
n′

∣

∣ϕ̃(1)
n (ω)

〉

ǫ
(0)
n − ǫ

(0)
n′ + ω

+
〈

ϕ̃
(1)
n′ (−ω)

∣

∣H − ǫ(0)
n

∣

∣ϕ(0)
n

〉

ǫ
(0)
n − ǫ

(0)
n′ + ω

−
〈

ϕ
(0)
n′

∣

∣ϕ̃(1)
n (ω)

〉

. (A12)

The complete first order change of the wave function is then

given by

ϕ(1)
n (r,t) =

1

2π

∫ ∞

−∞
ϕ(1)

n (r,ω) exp[−i(ω + ǫn)t] dω (A13)

with

ϕ(1)
n (r,ω) =

∑

n′

[

〈

ϕ
(0)
n′

∣

∣W (ω)
∣

∣ϕ(0)
n

〉

ǫ
(0)
n − ǫ

(0)
n′ + ω

+
〈

ϕ
(0)
n′

∣

∣H − ǫ
(0)
n′

∣

∣ϕ̃(1)
n (ω)

〉

ǫ
(0)
n − ǫ

(0)
n′ + ω

+
〈

ϕ̃
(1)
n′ (−ω)

∣

∣H − ǫ(0)
n

∣

∣ϕ(0)
n

〉

ǫ
(0)
n − ǫ

(0)
n′ + ω

]

ϕ
(0)
n′ (r)

+ϕ̃(1)
n (r,ω) −

∑

n′

〈

ϕ
(0)
n′

∣

∣ϕ̃(1)
n (ω)〉ϕ(0)

n′ (r) . (A14)

The wave-function response, Eq. (A14), comprises the sum-

over-states (SOS) term of conventional perturbation theory,
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Pulay terms that correct for deviations of the state ϕ(0)
n and

ϕ
(0)
n′ , respectively, from the true eigenstate of H , and the basis

response (BR) term. The latter consists of the basis response

ϕ̃(1)
n (r,ω) and a double-counting correction. The Pulay and

BR term together constitute the IBC. In Eq. (10) the Pulay

term, correcting for deviations of the state ϕ(0)
n from the true

eigenstate of H , has been neglected, since we found that this

term is usually negligibly small for an occupied state ϕn.

APPENDIX B: CORE ELECTRON RESPONSE

In the LAPW approach, the core-electron wave functions

are given as solutions to an atomic Dirac equation. For the

calculation of the core-electron response, however, we apply

the scalar-relativistic approximation. For notational simplicity

we resort to the nonrelativistic Schrödinger equation in the

following.

The core-electron wave functions of atom a are given as

solutions of

(

H − ǫa
lmp

)

ϕa
lmp(r) = 0 , (B1)

where only the spherical potential is taken into account in

the Hamiltonian H . Due to the atomic boundary conditions,

solutions of Eq. (B1) exist only at specific eigenenergies ǫa
plm.

Since the potential is restricted to be spherical, the eigenvalues

are degenerate with respect to the magnetic quantum number

m (ǫa
lmp = ǫa

lp), and the core wave functions are simply given

by

ϕa
lmp(r) = ua

lp(r)Ylm(r̂) , (B2)

where p denotes the principal quantum number, l is the angular

momentum, and m is the magnetic quantum number.

The first-order change of the core wave function

ϕ
a(1)
lmp (r,ω)e−iωt caused by the perturbation MI (r)e−iωt with

MI (r) = Ma
LP (r)YLM (r̂) results from a Sternheimer equation

formally equivalent to Eq. (5). In contrast to the LAPW basis,

however, the solution of the Sternheimer equation for the

core electrons has to obey atomic boundary conditions, which

makes the solution of the Sternheimer equation unique.

In order to solve this equation numerically, an extended

radial mesh that exceeds the MT sphere of atom a is used.

In principle, we can employ the same shooting technique

as described in our previous paper [20], in which the

homogeneous and inhomogeneous Sternheimer equation is

integrated outward and inward up to a matching point. The

inward integration starts at a large distance from the atomic

nucleus. The two homogeneous solutions obtained by inward

and outward integration are added in the respective region such

that the solution becomes continuous in value and slope at the

matching point. In this way, a unique solution is obtained.

However, we observed that for large imaginary frequencies

this approach becomes numerically unstable, since for large

frequencies the radial part of the homogeneous solution starts

to grow exponentially. Hence, we make use of a finite-

difference approach, which has the benefit that the explicit

computation of the homogeneous solution is completely

avoided. The second radial derivative of Eq. (5) is therefore

calculated from the finite difference

∂2

∂r2
f (r)|r=rk

=
fk+1 − 2fk + fk−1

(rk+1 − rk)(rk − rk−1)
, (B3)

with which the Sternheimer equation turns into a set of

coupled linear equations of the form Ax = b. In the case

of the Schrödinger equation (scalar-relativistic Schrödinger

equation) the corresponding matrix A has tridiagonal (penta-

diagonal) form. For the solution of the algebraic system of

band matrix form efficient algorithms exist (e.g., the Thomas

algorithm [52]). The atomic boundary conditions can be easily

incorporated in the matrix A by setting A12 = Ann−1 = 0.

We validated our implementation by comparing the resulting

core-electron response with the one obtained by the shooting

method. As long as the shooting method is stable, the results

of both approaches are identical.

As an example, we show in Fig. 4 the response of the

Ba 4s core state of rocksalt BaO due to a given spherical

(a )
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-0.5
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 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5

r (a.u.)

ru4s(r)

rM
I
(r)

BaO

(b)

-0.08
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-0.04
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 0.02

 0.04

 0.06
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 0  0.5  1  1.5  2  2.5

r
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 (
1
)

 4
s 

(r
,ω

)
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ω=      0.47i
ω=    15.69i
ω=  151.19i
ω=1517.18i
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FIG. 4. (Color online) Ba 4s core state of BaO [(red) solid line in

(a)] is perturbed by the spherical mixed product basis function shown

as the (blue) dashed line in (a). The response of the Ba 4s core is

shown for four different imaginary frequencies in (b).
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muffin-tin mixed-product-basis function [shown in Fig. 4(a) as

the (blue) dashed curve] for different imaginary frequencies.

With increasing frequency the radial response is constricted to

a smaller and smaller region around the atomic nuclei (r = 0),

and at the same time the amplitude of the response becomes

smaller and smaller.

APPENDIX C: POLARIZABILITY

By utilizing the expression for the first-order change of the

wave function [Eq. (A14)], the response function [Eq. (12)]

decomposes into a SOS, BR, and Pulay part. The explicit

expressions for each of these terms is given in the following:

χSOS
IJ (q,ω) =

BZ
∑

k

occ.
∑

n

unocc.
∑

n′

〈

M
q

I ϕnk

∣

∣ϕn′k+q

〉〈

ϕn′k+q

∣

∣ϕnkM
q

J

〉

[

1

ǫnk − ǫn′k+q + ω
+

1

ǫnk − ǫn′k+q − ω

]

(C1)

χBR
IJ (q,ω) =

BZ
∑

k

occ.
∑

n

〈

M
q

I ϕnk

∣

∣ϕ̃
(1)
nk,Jq(ω) + ϕ̃

(1)
nk,Jq(−ω)

〉

−
BZ
∑

k

occ.
∑

n

∑

n′

〈

M
q

I ϕnk

∣

∣ϕn′k+q

〉〈

ϕn′k+q

∣

∣ϕ̃
(1)
nk,Jq(ω) + ϕ̃

(1)
nk,Jq(−ω)

〉

(C2)

χ
Pulay

IJ (q,ω) =
BZ
∑

k

occ.
∑

n

∑

n′

〈

M
q

I ϕnk

∣

∣ϕn′k+q

〉

[

〈

ϕn′k+q

∣

∣H − ǫn′k+q

∣

∣ϕ̃
(1)
nk,Jq(ω)

〉

ǫnk − ǫn′k+q + ω
+

〈

ϕn′k+q

∣

∣H − ǫn′k+q

∣

∣ϕ̃
(1)
nk,Jq(−ω)

〉

ǫnk − ǫn′k+q − ω

+
〈

ϕ̃
(1)
n′k+q,Jq(−ω)

∣

∣H − ǫnk

∣

∣ϕnk

〉

ǫnk − ǫn′k+q + ω
+

〈

ϕ̃
(1)
n′k+q,Jq(ω)

∣

∣H − ǫnk

∣

∣ϕnk

〉

ǫnk − ǫn′k+q − ω

]

. (C3)

According to our experience the Pulay terms comprising H − ǫnk|ϕnk〉 are negligibly small and can be discarded. Note that

if the quantity ϕ̃
(1)
nk,Jq(ω) occurs in the bra only the wave function has to be complex conjugated and not the perturbation, i.e.,

〈ϕ̃(1)
nk,Jq(ω)| corresponds to the response of ϕ̃σ∗

nk due to M
q

J (r)e−iωt .
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