000279243 001__ 279243
000279243 005__ 20210129221019.0
000279243 0247_ $$2doi$$a10.1103/PhysRevApplied.4.044019
000279243 0247_ $$2Handle$$a2128/9552
000279243 0247_ $$2WOS$$aWOS:000363795900001
000279243 0247_ $$2altmetric$$aaltmetric:4225961
000279243 037__ $$aFZJ-2015-07258
000279243 082__ $$a530
000279243 1001_ $$0P:(DE-HGF)0$$aPosen, Sam$$b0$$eCorresponding author
000279243 245__ $$aShielding Superconductors with Thin Films as Applied to rf Cavities for Particle Accelerators
000279243 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2015
000279243 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449671383_32509
000279243 3367_ $$2DataCite$$aOutput Types/Journal article
000279243 3367_ $$00$$2EndNote$$aJournal Article
000279243 3367_ $$2BibTeX$$aARTICLE
000279243 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279243 3367_ $$2DRIVER$$aarticle
000279243 520__ $$aDetermining the optimal arrangement of superconducting layers to withstand large-amplitude ac magnetic fields is important for certain applications such as superconducting radio-frequency cavities. In this paper, we evaluate the shielding potential of the superconducting-film–insulating-film–superconductor (SIS′) structure, a configuration that could provide benefits in screening large ac magnetic fields. After establishing that, for high-frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters, we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS′ structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.
000279243 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000279243 588__ $$aDataset connected to CrossRef
000279243 7001_ $$0P:(DE-HGF)0$$aTranstrum, Mark K.$$b1
000279243 7001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b2
000279243 7001_ $$0P:(DE-HGF)0$$aLiepe, Matthias U.$$b3
000279243 7001_ $$0P:(DE-HGF)0$$aSethna, James P.$$b4
000279243 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.4.044019$$gVol. 4, no. 4, p. 044019$$n4$$p044019$$tPhysical review applied$$v4$$x2331-7019$$y2015
000279243 8564_ $$uhttps://juser.fz-juelich.de/record/279243/files/PhysRevApplied.4.044019.pdf$$yOpenAccess
000279243 8564_ $$uhttps://juser.fz-juelich.de/record/279243/files/PhysRevApplied.4.044019.gif?subformat=icon$$xicon$$yOpenAccess
000279243 8564_ $$uhttps://juser.fz-juelich.de/record/279243/files/PhysRevApplied.4.044019.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000279243 8564_ $$uhttps://juser.fz-juelich.de/record/279243/files/PhysRevApplied.4.044019.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000279243 8564_ $$uhttps://juser.fz-juelich.de/record/279243/files/PhysRevApplied.4.044019.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000279243 8564_ $$uhttps://juser.fz-juelich.de/record/279243/files/PhysRevApplied.4.044019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279243 909CO $$ooai:juser.fz-juelich.de:279243$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000279243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279243 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000279243 9141_ $$y2015
000279243 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000279243 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279243 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2014
000279243 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279243 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279243 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000279243 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279243 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279243 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279243 920__ $$lyes
000279243 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000279243 980__ $$ajournal
000279243 980__ $$aVDB
000279243 980__ $$aUNRESTRICTED
000279243 980__ $$aI:(DE-Juel1)PGI-2-20110106
000279243 9801_ $$aUNRESTRICTED
000279243 9801_ $$aFullTexts