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Determining the optimal arrangement of superconducting layers to withstand large-amplitude ac

magnetic fields is important for certain applications such as superconducting radio-frequency cavities.

In this paper, we evaluate the shielding potential of the superconducting-film–insulating-film–

superconductor (SIS0) structure, a configuration that could provide benefits in screening large ac magnetic

fields. After establishing that, for high-frequency magnetic fields, flux penetration must be avoided, the

superheating field of the structure is calculated in the London limit both numerically and, for thin films,

analytically. For intermediate film thicknesses and realistic material parameters, we also solve numerically

the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible,

on the order of a few percent, for the SIS0 structure relative to a bulk superconductor of the film material, if

the materials and thicknesses are chosen appropriately.
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I. INTRODUCTION

Can one engineer a better superconducting magnetic

shield? How can one optimally arrange materials to

maintain complete flux exclusion from a region, and what

is the maximum external field that can be screened? It has

long been known that superconducting films of width d
smaller than the London magnetic penetration depth λ can

remain superconducting at much higher magnetic fields

than bulk samples [1], so it has been proposed that films

could be used to shield bulk superconductors [2]. In this

paper, we investigate the shielding properties of the film-

insulator-bulk (SIS0) structure and compare to the single

superconducting slab. The focus here is on ac rather than dc

shielding; the latter has already been studied extensively

[3–7].

Superconducting radio-frequency (SRF) cavities are an

example of an application in which shielding of large-

amplitude high-frequency magnetic fields is required. This

technology underlies particle accelerators used in high-

energy physics, nuclear physics, neutron sources, and x-ray

light sources. The large ac accelerating electric field of

these cavities induces a correspondingly large magnetic

field. If the magnetic field exceeds the flux penetration field

of the material, it causes a quench in the cavity. If SIS0

structures could enhance the flux penetration field relative

to that of a bulk superconductor, it could allow these

cavities to achieve higher accelerating fields [8]. This has

motivated significant experimental effort to fabricate such

structures [9–11], although their ability to screen large-

amplitude rf magnetic fields has not yet been measured.

In this paper, we examine the superheating fields Bsh of

these structures, where flux penetration would occur in

defect-free superconductors; below Bsh, the whole structure

can remain in the vortex-free (metastable) Meissner state.

In fact, part of the motivation for this work is that there has

been significant confusion in the SRF community regard-

ing the maximum fields that SIS0 structures can screen; we

hope that this study clarifies the screening mechanism and

its limitations. Our calculations show modest shielding

gains for SIS0 heterolaminates compared to bulk super-

conductors. The SIS0 structure may provide benefits in

other ways for realistic materials with surface defects [12],

but considering those benefits is beyond the scope of the

present work.

The paper is organized as follows: We start our analysis

by arguing in Sec. II that, for a SIS0 structure, a signi-

ficant enhancement of the flux penetration field could be

achieved only if a significant gradient in the phase of the

order parameter ∇ϕ can be established across the film

shielding the bulk. Since this would result in a level of

dissipation that is likely unmanageable, we restrict our

analysis to fields below Bsh, where both the film and bulk
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superconductor are in the (meta)stable Meissner state, with

no phase gradient across the film. In Sec. III, numerical

calculations are performed in the London limit. The thin-

film regime is examined in Sec. IV with an analytical

Ginzburg-Landau approach. In Sec. V, the results are

extended to films of intermediate thicknesses via a full

numerical Ginzburg-Landau analysis. We summarize our

work in Sec. VI.

II. FLUX EXCLUSION

The fundamental link between superconducting order

and magnetism is the fact that the free energy and proper-

ties of the system are governed not by the gradients ∇ψ of

the superconducting order parameter but by a “covariant”

derivative Dψ ¼ ð∇ − e�iA=ℏÞψ , where e� ¼ 2e is the

Cooper pair charge and A is the magnetic vector potential

[1]. If we write the complex order parameter in terms of two

real functions as ψ ¼ jψ j expðiϕÞ, the covariant derivative

becomes

Dψ ¼ ½∇jψ j þ ijψ jð∇ϕ − e�A=ℏÞ� expðiϕÞ ð1Þ

¼ ½∇jψ j þ ijψ jðm�vs=ℏÞ� expðiϕÞ; ð2Þ

where the gauge-invariant combination

ðℏ=m�Þð∇ϕ − e�A=ℏÞ ¼ vs ð3Þ

is called the supercurrent velocity. Magnetic fields cause

“stress” in superconductors indirectly through A, which

induces screening supercurrents. Because of these super-

currents, a weak magnetic field exponentially decays inside

a superconductor over the penetration depth λ. As a crude

approximation, the superconductor can support a certain

maximum stress, characterized by a maximum supercurrent

velocity vmax
s . The superconductor can screen A values

larger than vmax
s m�=e� only if it passes vortex lines through

its boundary. For example, if a vortex line is passed through

a hollow superconducting cylinder in a parallel external

field, this will bring flux inside the cylinder and ϕwill wind

by a factor of 2π, lowering the stress in the superconductor.

Now let us consider a single thin superconducting film

separated from a bulk superconductor by a thin insulator,

shown in Fig. 1. In a “thin” superconductor of thickness

d ≪ λ, the critical fields are enhanced; for example, for

the parallel thermodynamic critical field, we have Hc∥ ¼
2

ffiffiffi

6
p

ðHcλ=dÞ [1]. The Meissner state requires A → 0 deep

in the bulk, and A is continuous across the insulating gap.

Therefore, the vector potential at the film surface is tied to

that of the bulk superconductor surface; however, the

insulating gap offers the opportunity to decouple the phase

gradient across the film from that in the bulk. If many

vortex lines pass through the film, the superconducting film

could be relatively unstressed, supplementing the native

superheating field of the film material.

In the dc limit, it should be possible to screen a bulk from

very large fields by using a compound film with many

layers of alternating thin superconducting and insulating

films with magnetic flux trapped between each of them.

However, in ac applications, filling the insulators with

magnetic flux demands the transfer of ∇ϕ=π fluxoids per

unit length across the screening film in each cycle. The ac

response of a superconductor with vortices has been

considered before—see, e.g., Refs. [13–15]. Here we

simply note that, as they pass through the film, the vortices

would experience strongly dissipative drag [2], generating

levels of heating that are likely unmanageable for most

applications [16].

As we are focusing on rf applications, we impose the

restriction that flux must never pass into the superconduct-

ing regions. With this restriction, the SIS0 structure would
offer an advantage over a single thick superconducting slab

if it could withstand higher magnetic fields without flux

penetration. Since the frequencies we are interested in are

much smaller than the gap, the superconducting order

parameter depends only on the instantaneous value of the

magnetic field. The flux-free state is intrinsically stable

only below Bc1, the lower critical field. However, there is

good evidence that real materials can withstand rf fields

well above Bc1 [17,18]. As the field is pushed above Bc1

and then again below it, the superconductor does not have

time to relax to its equilibrium (mixed) state but is rather in

a metastable Meissner state. In this metastable regime, an

energy barrier prevents flux from penetrating, a barrier that

is reduced to zero at Bsh for a defect-free material (thermal

fluctuations at cryogenic temperatures are much smaller

than the condensation energy, so they cannot create

excitations above the barrier). Bsh is the ultimate ac

magnetic limit; this is especially important for SIS0 films,

as they are always in the metastable state [16]. We use BSIS0
sh

to denote the maximum metastable field of a SIS0 structure
to distinguish it from the superheating field of the bulk

material, Bsh;b, and the bulk superheating field of the film

material, Bsh;f (i.e., the value it would have if it were not a

thin film). In the next three sections, we present and
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FIG. 1. Example of a SIS0 structure. The amplitudes of the

magnetic field, the vector potential, and the Gibbs free energy are

plotted as a function of distance into the structure.
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compare three approaches to calculate BSIS0
sh . We study this

limit quantitatively, to evaluate how useful these structures

would be for real applications. We show that the SIS0

structure leads to a small increase in the maximum field,

much smaller than the manifold increase in the parallel

critical field of thin films mentioned above and that

motivated the proposal in Ref. [2].

III. SUPERHEATING FIELD IN THE

LONDON LIMIT

To make a rough estimate of the superheating field of the

SIS0 structure, we consider the Gibbs free energy G in the

London limit; that is, we assume that both film and bulk

superconductors are strongly type-II materials, with pen-

etration depths much longer than coherence lengths. We

denote by λf the film’s material penetration depth and by ξf
its coherence length. The thickness d of the film is assumed

to be much larger than ξf; in particular, for the vortex core

to be accommodated in the film, one needs d ≳ 1.8ξf
[19,20]. The film is separated from a bulk superconductor

with penetration depth λb by an insulating film of thickness

δ. The superconducting film is screening the bulk from a

parallel magnetic field with amplitude B0. The screened

field between the film and the bulk has amplitude Bi. In our

geometry, the x axis is perpendicular to the film, pointing

into it, with the origin at the interface with the exterior. The

z axis is aligned with the magnetic field.

The Gibbs free energy of a vortex in a superconductor

can be determined from the value of two magnetic fields

evaluated at the vortex location r0, the Meissner-screened

external field BM and the field generated by the vortex in

the film BV [21]:

G ¼ ϕ0

μ0
½BVðr0Þ=2þ BMðr0Þ�; ð4Þ

where ϕ0 is the flux quantum and μ0 the magnetic constant.

The field BM can be found by minimizing the free energy in

the structure when no vortex is present; we recall that in the

London limit the Meissner field in the bulk superconductor

decays exponentially, and hence it equals Bie
−½x−ðdþδÞ�=λb .

This procedure gives

BM ¼ B0 þ Bi

2

cosh
x−d=2
λf

cosh d
2λf

−
B0 − Bi

2

sinh
x−d=2
λf

sinh d
2λf

; ð5Þ

where Bi is given by

Bi ¼ B0

�

δþ λb

λf
sinh

d

λf
þ cosh

d

λf

�

−1

: ð6Þ

Explicit formulas for BV are available for thin (d ≪ λf)

and thick (d ≫ λf) films [21]. To study the full range of

thicknesses, we use the more general expression of

Ref. [22] [this expression assumes r0 ¼ ðx0; 0Þ]:

BV ¼ 2ϕ0

λ2d

X

∞

n¼1

Z

∞

−∞

dk

2π
eiky

sinðπnx=dÞ sinðπnx0=dÞ
k2 þ ðπn=dÞ2 þ 1=λ2

: ð7Þ

Equations (5)–(7) give the fields in the structure, and

Eq. (4) gives the Gibbs free energy as shown in Fig. 1.

The barrier to flux penetration is due to the positive slope of

G inside the superconducting regions near the interfaces.

We can find BSIS0
sh by finding the field at which the barrier is

reduced to zero in any of the superconductors [23]. In

Fig. 2, BSIS0
sh is plotted as a function of the superconducting

film thickness for various SIS0 structures. Various insulator
thicknesses are considered, including the thin layer limit,

for illustrative purposes as it gives the highest fields. The

materials analyzed are those that are promising for SRF

cavities, with properties given in Table I.

The structures plotted in Fig. 2 can be divided into two

types: homolaminates, in which the film is the same

material as the bulk, and heterolaminates, in which they

are different. Calculations show that for a homolaminate

like Nb3Sn-insulator-Nb3Sn, the film is the weak point: It

always reaches its Bsh before the bulk, and the thinner the

film, the lower its Bsh. Homolaminates with films that are

so thick that they behave like a bulk superconductor have

the highest BSIS0
sh . To better understand this, consider the

magnetic forces on a vortex [which can be derived from

Eq. (4)]. The boundary condition imposed by BV can be

satisfied by an image antivortex outside of the boundary,

which creates a force that pulls the vortex out of the film

[32]. As the film thickness is reduced, BM remains

approximately unchanged, but the image antivortex on

the insulator side of the film used to satisfy BV has a
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FIG. 2. Maximum field below Bsh of both the film and the bulk

as a function of film thickness for various film materials in a SIS

structure with Nb. The effect of varying the insulator thickness δ

is shown for the Nb3Sn film, as is the effect of splitting the film

thickness d over five equally thick multilayers with thin sepa-

rating insulators. All calculations are done in the London limit.

SHIELDING SUPERCONDUCTORS WITH THIN … PHYS. REV. APPLIED 4, 044019 (2015)

044019-3



stronger effect, as shown in Fig. 3. This lowers the barrier to

penetration.

The differing penetration depths in the layers of a

heterolaminate cause it to behave differently than a homo-

laminate. Here we consider structures in which the bulk has

a smaller penetration depth than the film. For such

structures, if the film is very thin, it does not provide

much screening for the bulk, and Bi reaches the bulk’s Bsh

before the thin-film barrier disappears. As with a homo-

laminate, a very thick film behaves like a bulk and reaches

that material’s bulk Bsh while Bi is still relatively small.

However, between these two extremes, there is a situation

in which the film provides some screening, so that Bi is

large but still smaller than B0. In this case, a benefit can be

realized—the small penetration depth of the material in the

bulk causes Bi to be larger than with the exponential decay

expected for a thick film [Eq. (6)]. This in turn reduces

the magnitude of the negative gradient in BM, bolstering the

barrier to flux penetration [Eq. (4)]. This increase in the

barrier is depicted in Fig. 4. The dark curves show BM, BV ,

and G for a Nb3Sn thin-film–insulator–Nb bulk SIS

structure with a 10-nm-thick insulator and d=λf ¼ 0.64

(the peak of the cyan curve in Fig. 2). The light curves show

calculations for a bulk Nb3Sn film (for this case, the dark

shaded region representing the insulator does not apply). In

this example, B0 ¼ 300 mT. The Gibbs free energy of the

SIS0 structure is still sharply peaked, showing a relatively

robust energy barrier, but that of the bulk film is almost flat,

showing that flux penetration is likely to occur at slightly

higher fields.

The impact of this is a modest increase in BSIS0
sh for these

structures compared to the bulk value of the film material.

However, the range of film thicknesses over which the

increase is appreciable (≳ a few percent) is relatively small,

and the gain decreases as the thickness of the insulating

layer increases.

IV. THIN FILMS IN THE

GINZBURG-LANDAU APPROACH

Calculating Bsh using the London theory, as done in the

previous section, fails to take into account 2D instabilities

in the order parameter, therefore overestimating Bsh in

many circumstances. The problem of calculating Bsh for

bulk samples while taking into account 2D instabilities has

a long history (see, e.g., Ref. [27]) and has mostly been

tackled in the Ginzburg-Landau (GL) framework. Only

recently were calculations beyond the GL theory performed

[33,34]; they show that, while the GL results cannot be

trusted quantitatively at low temperatures, they give a

qualitatively correct estimate. Therefore, for simplicity,

we restrict ourselves to the GL theory even in the low-

temperature regime where its quantitative predictions are

not exact.

The approach we use to find Bsh is described in detail in

Ref. [27]: We first extremize the GL free energy, a func-

tional of the spatially dependent order parameter ψ and

supercurrent velocity vs, and then study its stability against

small perturbation of these functions. In the present case,

FIG. 3. Forces on a vortex in a homolaminate. As the film is

made thinner, the image antivortex to the right of the film has a

stronger pull on the vortex, lowering the barrier to vortex

penetration.
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(dark curves) to a bulk film (light curves). The slower decay of

BM in the large-λ thin film influences G, bolstering the barrier to
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the insulating region of the SIS0 can be ignored for the bulk film.

TABLE I. Materials parameters of niobium and three promising

alternative SRF materials. The penetration depth λ is calculated

by using Eq. (3.131) in Ref. [1]. The correlation length ξ is

calculated by using the equations in Ref. [24]. For Nb, a residual

resistivity ratio of 100 is assumed. For MgB2, λ and ξ are not

calculated, as the experimental values are given in the reference.

For calculations, Bc ¼ ϕ0=ð2
ffiffiffi

2
p

πξλÞ is used [1]. Bc1 for Nb

found from a power-law fit to numerically computed data from

Refs. [25,26] and for strongly type-II materials is found from

Eq. (5.18) in Ref. [1]. Bsh is calculated by using Bsh ≃

Bc½ð
ffiffiffiffiffi

20
p

=6Þ þ ð0.5448= ffiffiffi

κ
p Þ� from Ref. [27]. Nb data are from

Ref. [28], Nb3Sn data from Ref. [29], NbN data from Ref. [30],

and MgB2 data from Ref. [31]. Note that the two-gap nature of

MgB2 may require more careful analysis than is performed here.

Material λ (nm) ξ (nm) Bc1 (T) Bc (T) Bsh (T)

Nb 40 27 0.13 0.21 0.25

Nb3Sn 111 4.2 0.042 0.50 0.42

NbN 375 2.9 0.006 0.21 0.17

MgB2 185 4.9 0.017 0.26 0.21
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the GL free energy is the sum of the contributions for the

bulk and the film. The boundary conditions are the usual

ones for the order parameter (vanishing of its derivatives at

all surfaces); the supercurrent velocity vanishes deep into

the bulk, and its derivative at the external film surface is

proportional to the applied magnetic field. Similarly, the

field between the film and the bulk is proportional to the

derivatives of the supercurrent velocities at the two surfa-

ces. However, this internal field is not externally imposed

but must be calculated consistently with Maxwell equa-

tions; this gives the final condition of continuity of the

vector potential across all surfaces. Hence, for a very thin

insulating barrier, the supercurrent velocities at the bulk

surface and the internal film surface coincide, while the

film supercurrent velocity would be higher for a thicker

insulator.

For an analytical estimate of the SIS0 superheating field

BSIS0
sh , we consider the simplest possible case of a strongly

type-II bulk material (GL parameter κGL ≫ 1) shielded by

an insulator of negligible thickness and a strongly type-II

thin film with ξf ≪ d ≪ λf. With a thin film, the difference

between the internal field (at the bulk surface) and the

applied field (outside the film) is small, and the maximum

possible field is reached when the internal field coincides

with the bulk superheating field Bsh;b. Indeed, within the

GL theory and at linear order in d=λf, using the boundary

conditions discussed above we find [see the Appendix]

BSIS0
sh ¼ Bsh;b

�

1þ
ffiffiffi

6

5

r

λb

λf

�

1 −
v2s;r

3

�

d

λf

þ 1

2
ð1 − v2s;rÞ

�

d

λf

�

2
�

; ð8Þ

where vs;r ¼ vmax
s;b =vmax

s;f is the ratio of the maximum

supercurrent velocities for the bulk and film material,

respectively. This ratio can be written in terms of critical

fields and penetration depths as vs;r ¼ Bc;bλb=Bc;fλf, and

as a necessary condition for metastability it must satisfy

vs;r < 1: Since in the bulk material the supercurrent

velocity has already reached its maximum possible value

at the surface, the film material must be able to support a

higher supercurrent velocity. We stress again that, for

sufficiently thin films (below the critical thickness dis-

cussed in the next paragraph), as the applied field becomes

larger than BSIS0
sh , the bulk becomes unstable, while the film

is still (meta)stable. As qualitatively expected, Eq. (8)

shows that for better screening a thicker film should be

used and that, as the film material penetration depth

increases, its screening power decreases. Also, the need

of small vrs implies that the film material critical field

should be sufficiently large: Bc;f > Bc;bλb=λf. Inter-

estingly, based on the values reported in Table I, this

condition can be met if using Nb3Sn or MgB2 to shield Nb.

We note, however, that there is in principle a limit on

how thick the film can be made: Since the supercurrent

velocity at the film external surface increases with thick-

ness, if the film is too thick, it will become unstable

at a field below that predicted by Eq. (8). Within our

approximations, we find that the critical thickness for

the film to also become unstable at BSIS0
sh is dc ¼

λf
ffiffiffiffiffiffiffiffi

6=5
p

ð1 − vs;rÞBc;f=Bc;b. We see that the condition

d < dc can severely restrict the maximum film thickness

only in the regime Bc;f ≪ Bc;b, λf ≫ λb. For the material

parameters in Table I, our formula gives dc ∼ λf, but films

of this thickness are beyond the approximate analytical

treatment that leads to Eq. (8). Therefore, to study the

screening properties of films of intermediate thickness,

d ∼ λf, in the next section we resort to numerical calcu-

lations that also account for the finite value of κGL.

V. FILMS OF INTERMEDIATE THICKNESS

For films of intermediate thickness, numerical tech-

niques are needed to accurately estimate the effective

superheating field of SIS structure in the Ginzburg-

Landau theory. Here, we follow closely the methods

described in Ref. [27]. It is shown there that, in the bulk,

three quantities characterize the system: coherence

length ξ, penetration depth λ, and thermodynamic critical

field Bc, which we give in Table I for some materials of

interest.

The Ginzburg-Landau equations are solved in each

domain separately, and then boundary conditions are

matched. In order to improve numerical stability, we

implement the boundary conditions as follows: At the film

surface, the gradient of the order parameter is fixed to zero

while the magnitude is allowed to vary, effectively defining

the applied magnetic field implicitly in terms of the order

parameter. We also allow the value of the order parameter

and the vector potential on the film side of the interface to

vary. On the bulk side of the interface, the gradient of the

magnetic field is fixed to zero while its magnitude is

allowed to vary. Infinitely deep in the bulk, the order

parameter is fixed to one and the vector potential vanishes.

This configuration introduces three parameters for the

boundary conditions: the magnitude of the order parameter

on either side of the interface and the magnitude of the

vector potential on the film side of the interface. These

three parameters are varied, until the gradient of the order

parameter vanishes on the film side of the interface and

both the magnetic vector potential and the magnetic field

are continuous at the interface.

Having found a solution, we next solve the eigenvalue

problem associated with the stability of the solution to

infinitesimal fluctuations of wave number k as in Ref. [27].
These solutions are also found numerically by using

boundary conditions similar to those just described.

The magnitude of the applied magnetic field and the
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wave number are then varied simultaneously to identify the

least-stable fluctuation and the applied magnetic field at

which it just becomes unstable (i.e., at which the eigenvalue

becomes zero). In this way, we identify the superheating

field and the critical wave number that characterizes the

unstable fluctuations. These calculations are summarized in

Fig. 5, in which we plot BSIS0
sh as a function of film thickness

for various materials. Note that the dashed lines start from

thicknesses of about 50 nm. For films with thickness less

than this, numerical results become increasingly difficult,

presumably due to the extremely separated length scales

involved. Interestingly, this thickness coincides with

approximately twice the depth
ffiffiffiffiffiffiffiffiffi

λfξf
p

of the fluctuations

[27], suggesting that interactions between the fluctuations of

both film surfaces may become relevant. Moreover, numeri-

cal solutions indicate that, at finite κ, the nature of the

instability itself may change from 2D to 1D as the thickness

decreases. Although beyond the scope of the present work,

these indications deserve further investigation.

The Ginzburg-Landau calculations show good qualita-

tive agreement with the London calculations from Fig. 2,

also shown in this figure. There are some quantitative

differences, likely due to the approximations used in the

London limit. For instance, the difference in the calculated

bulk Bsh of the film material, which is approached as the

film becomes a few λf thick, is due to the finiteness of κ.

For the heterolaminate, in both cases as the film thickness

increases, BSIS0
sh shows a peak near d ∼ λf and then

decreases to the superheating field of the film material

as the film becomes very thick. The thickness at which the

peak occurs is somewhat smaller for the London limit, but

the two plots are otherwise very similar in shape.

VI. CONCLUSIONS

In this study, we analyze the magnetic shielding proper-

ties of superconductors at high fields and high frequencies.

To prevent strong vortex dissipation due to drag, the

analysis is restricted to a regime where flux penetration

is not allowed. The London-limit numerical results are

verified against analytical and numerical Ginzburg-Landau

calculations. We show that the SIS0 structure can produce a
modest enhancement of the maximum screening field

compared to a single superconducting slab for certain

materials and film thicknesses; see the maxima in Fig. 5.
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APPENDIX: DERIVATION OF EQ. (8)

In the case of large GL parameter κGL ≫ 1, the calcu-

lation of the metastability field, Eq. (8), is greatly

simplified: For κGL → ∞, the spatial profile of the order

parameter is fully determined by that of the supercurrent

velocity, and the differential equation for the latter is local,

albeit nonlinear [27]. Indicating with q0 the dimensionless

supercurrent velocity, for the geometry we are considering

it obeys the equation

q00
0
¼ q0 − q3

0
; ðA1Þ

and the metastability condition takes the simple form

q2
0
< 1=3 [27]. The dimensionful velocity is proportional

to q0 multiplied by the critical field and the penetration

depth, vs ∝ Bcλ, and we do not need the proportionality

constant in what follows.

For simplicity, in this Appendix we use a coordinate

system in which x axis perpendicular to the film has its

origin in the middle of the film and measure lengths in units

of the film material penetration depth λf. We also take the

insulator thickness to be negligible, δ ¼ 0, as this gives the

highest possible metastable field. As discussed in Secs. III

and IV, the instability happens at the bulk surface; this fixes

the values of the supercurrent velocity at the interior surface

of the film to be

q0

�

d

2λf

�

¼ −

ffiffiffi

1

3

r

vs;r; vs;r ¼
Bc;bλb

Bc;fλf
: ðA2Þ

Clearly, a necessary condition for the metastability of the

film is vs;r < 1. In fact, since the supercurrent velocity at

the outer surface is larger, we will further need to check that

q2
0
ð−d=2λfÞ < 1=3. In addition to the above boundary

condition, we also need the field between the film and

bulk to coincide with the bulk superheating field:
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FIG. 5. Bsh in a SIS0 structure as a function of film thickness.

The insulating layer is assumed to be very thin. London-limit

calculations are compared to Ginzburg-Landau analytical and

numerical calculations. For reference, the dashed vertical line is at

the position d ∼ 5ξf ∼
ffiffiffiffiffiffiffiffiffi

λfξf
p

. We recall that the results of

Secs. III (solid lines) and IV (dot-dashed line) are valid for films

thick compared to ξf. Calculations and simulations are done by

using material parameters from Table I.
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q0
0
�

d

2λf

�

¼ Bsh;b
ffiffiffi

2
p

Bc;f

: ðA3Þ

The task is now to find the external field at which these two

boundary conditions are satisfied:

BSIS0
sh ¼

ffiffiffi

2

p
Bc;fq0

0
�

−
d

2λf

�

: ðA4Þ

To solve Eq. (A1), thanks to the assumption d ≪ λf, we

can proceed by a Taylor expansion of the function q0ðxÞ
near x ¼ 0:

q0ðxÞ ¼ qc þ b0xþ b1
x2

2
þ b2

x3

3
þ � � � : ðA5Þ

Substituting the expansion into Eq. (A1) and matching the

terms on the two sides of the equality, we find

b1 ¼ qcð1 − q2cÞ; b2 ¼
1

2
b0ð1 − 3q2cÞ; ðA6Þ

showing that only two parameters of the expansion, qc and
b0, are left undetermined and thus can be fixed by the

boundary conditions. Moreover, Eq. (A4) can be written in

the form

BSIS0
sh ¼ Bsh;b −

ffiffiffi

2

p
Bc;fqcð1 − q2cÞ

d

λf
þO

�

d

λf

�

3

; ðA7Þ

and hence to calculate BSIS0
sh to second order in d=λf we

need only to know qc to first order. We can therefore use the

boundary condition (A3) at lowest order to obtain b0 ¼
Bsh;b=

ffiffiffi

2
p

Bc;f and the boundary condition (A2) at first order

to find

qc ¼ −

ffiffiffi

1

3

r

vs;r −
Bsh;b
ffiffiffi

2
p

Bc;f

d

2λf
: ðA8Þ

Substituting this expression into Eq. (A7) and keeping only

terms up to second order, we find

BSIS0
sh ¼ Bsh;b

�

1þ 1

2
ð1 − v2s;rÞ

�

d

λf

�

2
�

þ
ffiffiffi

2

p
Bc;f

ffiffiffi

1

3

r

vs;r

�

1 −
v2s;r

3

�

d

λf
: ðA9Þ

To put this equation in the form given in Eq. (8), we use the

relationship [27] Bsh;b ¼
ffiffiffi

5
p

Bc;b=3 between superheating

and critical fields. Finally, by considering at linear order in

d=λf the metastability requirement q0ð−d=2λfÞ > −1=
ffiffiffi

3
p

,

we obtain the critical thickness dc reported at the end

of Sec. IV.
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