000279244 001__ 279244
000279244 005__ 20230426083130.0
000279244 0247_ $$2doi$$a10.1103/PhysRevB.92.235401
000279244 0247_ $$2ISSN$$a0163-1829
000279244 0247_ $$2ISSN$$a0556-2805
000279244 0247_ $$2ISSN$$a1095-3795
000279244 0247_ $$2ISSN$$a1098-0121
000279244 0247_ $$2ISSN$$a1550-235X
000279244 0247_ $$2Handle$$a2128/9553
000279244 0247_ $$2WOS$$aWOS:000365774000006
000279244 0247_ $$2altmetric$$aaltmetric:4542836
000279244 037__ $$aFZJ-2015-07259
000279244 082__ $$a530
000279244 1001_ $$0P:(DE-HGF)0$$aHassler, Fabian$$b0
000279244 245__ $$aExchange interaction of two spin qubits mediated by a superconductor
000279244 260__ $$aCollege Park, Md.$$bAPS$$c2015
000279244 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449671546_32509
000279244 3367_ $$2DataCite$$aOutput Types/Journal article
000279244 3367_ $$00$$2EndNote$$aJournal Article
000279244 3367_ $$2BibTeX$$aARTICLE
000279244 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279244 3367_ $$2DRIVER$$aarticle
000279244 520__ $$aEntangling two quantum bits by letting them interact is the crucial requirement for building a quantum processor. For qubits based on the spin of the electron, these two qubit gates are typically performed by exchange interaction of the electrons captured in two nearby quantum dots. Since the exchange interaction relies on tunneling of the electrons, the range of interaction for conventional approaches is severely limited as the tunneling amplitude decays exponentially with the length of the tunneling barrier. Here, we present an approach to couple two spin qubits via a superconducting coupler. In essence, the superconducting coupler provides a tunneling barrier for the electrons which can be tuned with exquisite precision. We show that as a result exchange couplings over a distance of several microns become realistic, thus enabling flexible designs of multiqubit systems.
000279244 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000279244 542__ $$2Crossref$$i2015-12-01$$uhttp://link.aps.org/licenses/aps-default-license
000279244 588__ $$aDataset connected to CrossRef
000279244 7001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b1$$eCorresponding author$$ufzj
000279244 7001_ $$0P:(DE-HGF)0$$aBluhm, Hendrik$$b2
000279244 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.92.235401$$bAmerican Physical Society (APS)$$d2015-12-01$$n23$$p235401$$tPhysical Review B$$v92$$x1098-0121$$y2015
000279244 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.92.235401$$gVol. 92, no. 23, p. 235401$$n23$$p235401$$tPhysical review / B$$v92$$x1098-0121$$y2015
000279244 8564_ $$uhttps://juser.fz-juelich.de/record/279244/files/PhysRevB.92.235401.pdf$$yOpenAccess
000279244 8564_ $$uhttps://juser.fz-juelich.de/record/279244/files/PhysRevB.92.235401.gif?subformat=icon$$xicon$$yOpenAccess
000279244 8564_ $$uhttps://juser.fz-juelich.de/record/279244/files/PhysRevB.92.235401.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000279244 8564_ $$uhttps://juser.fz-juelich.de/record/279244/files/PhysRevB.92.235401.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000279244 8564_ $$uhttps://juser.fz-juelich.de/record/279244/files/PhysRevB.92.235401.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000279244 8564_ $$uhttps://juser.fz-juelich.de/record/279244/files/PhysRevB.92.235401.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279244 909CO $$ooai:juser.fz-juelich.de:279244$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000279244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279244 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000279244 9141_ $$y2015
000279244 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279244 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000279244 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279244 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279244 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279244 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279244 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000279244 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279244 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2014
000279244 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279244 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000279244 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279244 920__ $$lyes
000279244 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000279244 980__ $$ajournal
000279244 980__ $$aVDB
000279244 980__ $$aUNRESTRICTED
000279244 980__ $$aI:(DE-Juel1)PGI-2-20110106
000279244 9801_ $$aUNRESTRICTED
000279244 9801_ $$aFullTexts
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature12011
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2014.216
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.106802
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7567/APEX.8.084401
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.150501
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1217692
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1209524
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.86.032324
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.2.011006
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.146804
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature10416
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature10444
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.13569
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.060501
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2004-00284-8
000279244 999C5 $$1A. A. Abrikosov$$2Crossref$$oA. A. Abrikosov Methods of Quantum Field Theory in Statistical Physics 1975$$tMethods of Quantum Field Theory in Statistical Physics$$y1975
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.45.2463
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2006-00372-9
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2003-00361-6
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.012504
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2014.306
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1656954
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/rphysap:01990002507077500
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1148758
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.104515
000279244 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1856